History	GDST	Main result	Below the gap	References
0000	0000000	00000	00000	000

The Borel reducibility Main Gap

Miguel Moreno University of Helsinki

European Set Theory Conference Münster, Germany

20 September, 2024

Image: A math a math

ESTC

1 of 25

Miguel Moreno (UH) The Borel reducibility Main Gap

The spectrum fuction

Let T be a countable theory over a countable language. Let $I(T, \alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

History 0●00	GDST 0000000	Main result 00000	Below the gap 00000	References 000

< (T) >

ESTC

3 of 25

Categoricity

▶ 1904: Veble introduced categorical theories.

> 1915 - 1920: Löwenheim-Skolem Theorem.

▶ **1965:** Morley's categoricity theorem.

Miguel Moreno (UH) The Borel reducibility Main Gap

Morley's conjecture

1960's: Let T be a first-order countable theory over a countable language. For all $\aleph_0 < \lambda < \kappa$,

 $I(T,\lambda) \leq I(T,\kappa).$

1990: Shelah proved Morley's conjecture.

Miguel Moreno (UH) The Borel reducibility Main Gap ESTC 4 of 25

Shelah's Main Gap Theorem

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T, \alpha) = 2^{\alpha}$; or $\forall \alpha > 0$, $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$.

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Descriptive Set Theory

1989: Friedman and Stanley introduced the Borel reducibility between classes of countable structures.

▶ **1991:** Väänänen Cantor-Bendixson theorem.

2014: Friedman-Hyttinen-Kulikov developed GDST and a systematic comparison between the Main Gap dividing lines and the complexity given by Borel reducibility.

History	GDST	Main result	Below the gap	References
0000	o●ooooo	00000	00000	000

The bounded topology

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{\eta \in \kappa^{\kappa} \mid \zeta \subset \eta\}$$

is a basic open set.

The Generalised Baire spaces

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

イロト イポト イヨト イヨト

ESTC 8 of 25

The generalised Cantor space is the subspace 2^{κ} .

Coding structures

Let $\omega \leq \mu \leq \kappa$ be a cardinal. Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$ and a bijection π_{μ} between $\mu^{<\omega}$ and μ .

Definition

For every $\eta \in \kappa^{\kappa}$ define the structure $\mathcal{A}_{\eta \restriction \mu}$ with domain μ as follows: For every tuple (a_1, a_2, \ldots, a_n) in μ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta} \restriction \mu} \Leftrightarrow \eta(\pi_\mu(m, a_1, a_2, \ldots, a_n)) > 0.$$

э

The isomorphism relation

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $f, g \in \kappa^{\kappa}$ are \cong^{μ}_{T} equivalent if one of the following holds:

$$\begin{array}{l} \blacktriangleright \quad \mathcal{A}_{\eta \restriction \mu} \models \mathcal{T}, \mathcal{A}_{\xi \restriction \mu} \models \mathcal{T}, \mathcal{A}_{\eta \restriction \mu} \cong \mathcal{A}_{\xi \restriction \mu} \\ \blacktriangleright \quad \mathcal{A}_{\eta \restriction \mu} \nvDash \mathcal{T}, \mathcal{A}_{\xi \restriction \mu} \nvDash \mathcal{T} \end{array}$$

Reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is *reducible* to E_2 , if there is a function $f : \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x, y) \in E_1 \Leftrightarrow (f(x), f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

With Borel functions, we can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T'$$
 iff $\cong_T \hookrightarrow_B \cong_{T'}$

History	GDST	Main result	Below the gap	References
0000	000000●	00000	00000	000

Question

Miguel The Bo

Question: What can we say about the Borel-reducibility between different dividing lines?

Conjecture: If T is classifiable and T' is not classifiable, then

$$\cong_T \hookrightarrow_B \cong_{T'}$$
.

	▲□▶ ▲圖▶ ▲圖▶ ▲圖▶	₹.	9 Q (P
Moreno (UH)			ESTC
orel reducibility Main Gap		1	2 of 25

History	GDST	Main result	Below the gap	References
0000	0000000	●0000	00000	000

Borel-reducibility Main Gap

Theorem (M.)

Let $\mathfrak{c} = 2^{\omega}$. Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then

$$\cong_T \hookrightarrow_C \cong_{T'}$$
 and $\cong_{T'} \not\hookrightarrow_B \cong_T$

æ

Equivalence modulo γ cofinality

Definition

We define the equivalence relation $=_{\gamma}^2 \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let $S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}$,

 $\eta =_{\gamma}^{2} \xi \iff \{ \alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha) \} \cap S \text{ is non-stationary.}$

ъ.

History	GDST	Main result	Below the gap	References
0000	0000000	00●00	00000	000

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017) Assume T is a classifiable theory. If \diamondsuit_S holds, then $\cong_T \hookrightarrow_L =_{\gamma}^2$.

3

History 0000	GDST 0000000	Main result 000●0	Below the gap 00000	References 000

$$=^2_{\gamma} \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}}, \kappa = \lambda^+$$

Theory	$\lambda = \lambda^{\theta}$	$2^{\mathfrak{c}} \leq \lambda =$	$2^{\mathfrak{c}} \leq \lambda =$
		$\lambda^{ heta}$	$\lambda^{<\lambda}$
Stable	$\gamma = \omega$	$\gamma = \omega$	$\gamma = \omega$
Unsuper-			
stable			
Unstable	$\omega \leq \gamma \leq$	$\omega \leq \gamma \leq$	$\omega \leq \gamma \leq$
	θ	θ	λ
Superstable	$\omega \leq \gamma \leq$	$\omega \leq \gamma \leq$	$\omega \leq \gamma \leq$
with	θ	θ	λ
ΟΤΟΡ			
Superstable	?	$\omega_1 \leq \gamma \leq$	$\omega_1 \leq \gamma \leq 1$
with DOP		θ	λ

 Miguel Moreno (UH)
 ESTC

 The Borel reducibility Main Gap
 16 of 25

Э.

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

History	GDST	Main result	Below the gap	References
0000	0000000	0000●	00000	000

Main Gap Dichotomy

Theorem (M.)

Let κ be inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

$$\blacktriangleright \cong_T$$
 is $\Delta^1_1(\kappa)$;

$$\blacktriangleright \cong_T$$
 is $\Sigma^1_1(\kappa)$ -complete.

< ロ > < 同 > < 三 > < 三 >

History	GDST	Main result	Below the gap	References
0000	0000000	00000	●0000	000

Classifiable theories

 $I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|);$

$$I(T,\alpha)=2^{\alpha}.$$

	C LP P		-	
				ESTC
			18	of 25

_

Miguel Moreno (UH) The Borel reducibility Main Gap

History	GDST	Main result	Below the gap	References
0000	0000000	00000	0●000	000

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \le \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T \hookrightarrow_B \cong_{T'}$$

History	GDST	Main result	Below the gap	References
0000	0000000	00000	00●00	000

General reduction

Fact (Mangraviti-Motto Ros)

Let E_1 be a Borel equivalence relation with $\gamma \leq \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma \leq \theta$, then $E_1 \hookrightarrow_B E_2$.

æ

History	GDST	Main result	Below the gap	References
0000	0000000	00000	000●0	000

In between

Lemma (M.) Suppose $\kappa = \lambda^+ = 2^{\lambda}$. Let $\kappa = \aleph_{\gamma}$ be such that $\beth_{\omega_1}(|\gamma|) \le \kappa$ and $2^{\mathfrak{c}} \le \lambda = \lambda^{<\omega_1}$. Suppose T_1 is a classifiable shallow theory, T_2 a classifiable non-shallow theory, and T_3 non-classifiable theory. Then

$$\cong_{T_1} \hookrightarrow_B \cong_{T_3}^{\lambda} \hookrightarrow_C \cong_{T_2} \hookrightarrow_C \cong_{T_3}$$

History	GDST	Main result	Below the gap	References
0000	0000000	00000	0000●	000

Thank you

Article at: https://arxiv.org/abs/2308.07510

Miguel Moreno (UH) The Borel reducibility Main Gap

22 of 25

2

(ロ) (四) (三) (三) (三)

References

- O. Veblen, A System of Axioms for Geometry, Transactions of the American Mathematical Society 5, 343–384 (1904).
- L. Löwenheim, Über Möglichkeiten im Relativkalkül, Math. Ann. 76, 447–470 (1915).
- T. Skolem, Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnskapsselskapets skrifter. I. Mat.-naturv. klasse. 4, 1–36 (1920).
- M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114, 514–538 (1965).

3

イロト 不得 トイヨト イヨト

References

- S. Shelah, *Classification theory*, Stud. Logic Found. Math.
 92, North-Holland (1990).
- H. Friedman, L. Stanley, A Borel reducibility theory for classes of countable structures, Journal of Symbolic Logic. 54, 894–914 (1989).
- J. Väänänen, Trees and Π¹₁-subsets of ^{ω1}ω₁, Fundamenta Mathematicae. **37**, 187–199 (1991).
- S.D. Friedman, T. Hyttinen, and V. Kulikov, *Generalized* descriptive set theory and classification theory, in Memories of the American Mathematical Society 230 (2014).

3

イロト 不得 トイヨト イヨト

History	GDST	Main result	Below the gap	References
0000	0000000	00000	00000	00●

References

- M. Moreno, Shelah's Main Gap and the generalized Borel-reducibility. Preprint, (2023).
- T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. math. Logic. 56, 175 – 185 (2017).
- F. Mangraviti, and L. Motto Ros, A descriptive main gap theorem, Journal of Mathematical Logic. 21, 2050025 (2020).

< ロ > < 同 > < 三 > < 三 >