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Abstract. We answer one of the main questions in generalized descriptive set
theory, the Friedman-Hyttinen-Kulikov conjecture on the Borel reducibility

of the Main Gap. We show a correlation between Shelah’s Main Gap and

generalized Borel reducibility notions of complexity. For any 𝜅 satisfying 𝜅 =
𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆𝜔1 , we show that if 𝑇 is a classifiable theory and 𝑇 ′ a

non-classifiable theory, then the isomorphism of models of 𝑇 ′ is strictly above

the isomorphism of models of 𝑇 with respect to Borel reducibility. We also
show that the following can be forced: for any countable first-order theory in

a countable vocabulary, 𝑇 , the isomorphism of models of 𝑇 is either analytic

co-analytic, or analytically-complete.
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1. Introduction

In this article we show a correlation between Shelah’s classification theory and
Friedman-Stanley Borel reducibility. Two different methods to classify first-order
countable complete theories developed in the 1980’s, the former one from model
theory and the latter one from set theory.

One of the classic problems in mathematics is the independence of Euclid’s fifth
postulate, the parallel postulate. In their approach to the problem, Khayyám (1077)
and Saccheri (1733) considered the three different cases of the Khayyám-Saccheri
quadrilateral (right, obtuse, and acute). These three cases correspond to Euclidean
geometry, Elliptic geometry, and Bolyai-Lobachevsky geometry (Hyperbolic geom-
etry). This exemplifies how mathematicians are interested in the different models
of a theory. This interest is more notorious in logic, where the study of the models
of a theory is a central topic. In particular the study of the spectrum function
𝐼(𝜆, 𝑇 ), the number of non-isomorphic models of cardinality 𝜆 of a theory 𝑇 , was
studied by many mathematicians in the 20th century.

The most “simple” case for the spectrum function would be when it takes values
in the set {0, 1}. In 1904 Veblen introduced the notion of categorical theory [56],
a theory is categorical if it has a model and all its models are isomorphic. In the
language of the spectrum function, a theory 𝑇 is categorical if there is a cardinal 𝜆
such that 𝐼(𝜆, 𝑇 ) = 1 and for all cardinals 𝜅 ̸= 𝜆, 𝐼(𝜅, 𝑇 ) = 0. In 1915 Löwenheim
proved one of the first results of model theory [29], the Löwenheim-Skolem theorem
(it was also proved by Skolem in 1920 [49]). The Löwenheim-Skolem theorem for
first-order countable theories tells us that if a first-order countable theory has an
infinite model, then for every infinite cardinal 𝜆, there is a model of cardinality
𝜆. This implies that there is no first-order countable categorical theory with an
infinite model.

It is surprising that this result came before Gödel’s completeness theorem, one
of the classic results of logic. Gödel’s completeness theorem was proved initially in
his Ph.D. thesis [12] in 1929 and published later [13] in 1930. It tells us that if a
theory 𝑇 is consistent, then there is a model of 𝑇 . This is one of the fundamental
results of logic.

In 1954  Loś [27] and Vaught[54] introduced the notion of 𝜅-categorical theory. A
theory 𝑇 is 𝜅-categorical if there is only one model of 𝑇 of size 𝜅 up to isomorphism.
A theory 𝑇 is categorical in 𝜅 if 𝑇 is 𝜅-categorical.  Loś announced that he has found
three kinds of 𝜅-categorical first-order countable complete theories:

∙ Totally categorical: 𝐼(𝜅, 𝑇 ) = 1 for every infinite cardinal 𝜅.
∙ Uncountably categorical: 𝐼(𝜅, 𝑇 ) = 1 if and only if 𝜅 is an uncountable

cardinal.
∙ Countably categorical: 𝐼(𝜅, 𝑇 ) = 1 if and only if 𝜅 is countable.

 Loś raised the following question about first-order countable complete theories:
Is a theory categorical in one uncountable cardinal necessarily categorical in every

uncountable cardinal?
In 1965 Morley answered  Loś’s question with his categoricity theorem [38].

Fact 1.1 (Morley’s categoricity theorem, Theorem 5.6 [38]). Let 𝑇 be a first-order
countable complete theory. If 𝑇 is categorical in one uncountable cardinal, then 𝑇
is categorical in every uncountable cardinal.

Morley’s work motivated the study of the spectrum function in more detail. In
the 1960’s it was conjectured that for every first-order countable complete theory
over a countable language, 𝑇 , and for all ℵ0 < 𝜅 < 𝜆,

𝐼(𝜅, 𝑇 ) ≤ 𝐼(𝜆, 𝑇 ).
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This conjecture is known as Morley’s conjecture. In 1969 [42], Shelah generalized
Morley’s theorems from [38]. During the 1970’s Shelah extended Morley’s theories,
this lead to the develop of stability theory and the program of classification the-
ory. To answer Morley’s conjecture, Shelah studied the spectrum problem. In his
book “Classification theory”, [47], Shelah published his renowned result The Main
Gap. With his classification theory program, Shelah was able to answer Morley’s
conjecture.

Fact 1.2 (Main Gap, Shelah [47, XII, Theorem 6.1]). Let 𝑇 be a first order count-
able complete theory and denote by 𝐼(𝜆, 𝑇 ) the number of non-isomorphic models
of 𝑇 of size 𝜆.

(1) If 𝑇 is not superstable or (is superstable) deep or has the DOP or has the
OTOP, then for every uncountable 𝜆, 𝐼(𝜆, 𝑇 ) = 2𝜆.

(2) If 𝑇 is shallow superstable without the DOP and without the OTOP, then
for every 𝛼 > 0, 𝐼(ℵ𝛼, 𝑇 ) < ℶ𝜔1

(|𝛼|).

Fact 1.3 (Morley’s Conjecture, Shelah [47, XIII, Theorem 3.7]). Let 𝑇 be a count-
able complete first-order theory. Then for 𝜆 > 𝜇 ≥ ℵ0, 𝐼(𝜆, 𝑇 ) ≥ 𝐼(𝜇, 𝑇 ) except
when 𝜆 > 𝜇 = ℵ0, 𝑇 is complete, ℵ1-categorical not ℵ0-categorical.

In 2000 Hart, Hrushovski, and Laskowski extended Shelah’s work and gave a
complete solution to the spectrum problem for countable theories in uncountable
cardinalities, see [14] where all possible values of 𝐼(𝜆, 𝑇 ) are given.

Thanks to these results we can see that there is a notion of complexity associated
to the value of 𝐼(𝜆, 𝑇 ), i.e. the more models a theory has at a fixed uncountable
cardinal, more complex the theory is. However this notion of complexity doesn’t
tell us anything about how to compare the complexity of theories with 2𝜆 non-
isomorphic models, i.e. theories in the first item of Fact 1.2.

We can use the proof of Fact 1.2 to understand the complexity of some theories.
To prove Fact 1.2, Shelah used his method of dividing lines. Shelah used stability
theory to defined the different dividing lines. Denote by 𝑆𝑚(𝐴) the set of all
consistent types over 𝐴 in 𝑚 variables (modulo change of variables), and 𝑆(𝐴) =
∪𝑚<𝜔𝑆

𝑚(𝐴).

∙ We say that 𝑇 is 𝜉-stable if for any set 𝐴, |𝐴| ≤ 𝜉, |𝑆(𝐴)| ≤ 𝜉.
∙ We say that 𝑇 is stable if there is an infinite 𝜉, such that 𝑇 is 𝜉-stable.
∙ We say that 𝑇 is unstable if there is no infinite 𝜉, such that 𝑇 is 𝜉-stable.
∙ We say that 𝑇 is superstable is there is an infinite 𝜉 such that for all 𝜉′ > 𝜉,
𝑇 is 𝜉′-stable.

The main dividing line in Fact 1.2 is classifiable theories vs non-classifiable the-
ories. This line is defined by using the notion of stable theory, the OTOP, and the
DOP.

Definition 1.4 (OTOP). A theory 𝑇 has the omitting type order property (OTOP)
if there is a sequence (𝜙𝑚)𝑚<𝜔 of first order formulas such that for every linear order
𝑙 there is a model ℳ and 𝑛-tuples 𝑎𝑡 (𝑡 ∈ 𝑙) of members of ℳ, 𝑛 < 𝜔, such that
𝑠 < 𝑡 if and only if there is a 𝑘-tuple 𝑐 of members of ℳ, 𝑘 < 𝜔, such that for every
𝑚 < 𝜔,

ℳ |= 𝜙𝑚(𝑐, 𝑎𝑠, 𝑎𝑡).

The non-forking notion ↓ and the isolation notion 𝐹 𝑎
𝜔 (Chapter 4 [47]) are needed

to define the DOP.

Definition 1.5 (DOP). A theory 𝑇 has the dimensional order property (DOP)
if there are 𝐹 𝑎

𝜔 -saturated models (𝑀𝑖)𝑖<3, 𝑀0 ⊆ 𝑀1 ∩𝑀2, 𝑀1 ↓𝑀0
𝑀2, and the

𝐹 𝑎
𝜔 -prime model over 𝑀1 ∪𝑀2 is not 𝐹 𝑎

𝜔 -minimal over 𝑀1 ∪𝑀2.
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Definition 1.6.

∙ We say that 𝑇 is classifiable if 𝑇 is superstable without DOP and without
OTOP.

∙ We say that 𝑇 is non-classifiable if it satisfies one of the following:
(1) 𝑇 is stable unsuperstable;
(2) 𝑇 is superstable and has DOP;
(3) 𝑇 is superstable and has OTOP;
(4) 𝑇 is unstable.

The main dividing line and the Main Gap Theorem captures a general idea of
complexity.

Classifiable theories are less complex than non-classifiable theories, and their
complexities are far apart.

Even thought the different dividing lines give us a way to understand the com-
plexity of theories, it would be good to have a complexity notion that extends the
one given by the Main Gap and allows us to compare the complexity of any two
theories.

The existence of a complexity notion that goes beyond the number of non-
isomorphic models was being sought out before the publication of the Main Gap
Theorem, with the work of Vaught in [55]. Motivated by Vaught conjecture, in
1989 Friedman and Stanley introduced the Borel reducibility theory for classes of
countable structures [11]. This led to a new complexity notion for classes of count-
able structures. The Borel reducibility complexity in descriptive set theory was
developed during the 1990’s by Becker, Kechris, Hjorth, and others (see [2], [15],
[16]). A subspace 𝐾 is invariant if 𝐾 is closed under isomorphism. Given 𝐾 and
𝐾 ′ invariant sets, we say that 𝐾 is Borel reducible to 𝐾 ′ if there is a Borel function
𝑓 from 𝐾 to 𝐾 ′such that for all 𝒜,ℬ ∈ 𝐾,

𝒜 ∼= ℬ ⇔ 𝑓(𝒜) ∼= 𝑓(ℬ).

In the 2000’s the question of whether the notion of Borel reducibility correlates
with model-theoretic notions of complexity was studied. Koerwien, Laskowski,
Marker, Shelah, and others studied the Borel reducibility of theories (i.e. the Borel
reducibility of models of a theory 𝑇 with universe 𝜔), see e.g. [24], [25], [26], [33].
Of particular impact in these investigation is the notion of Borel completeness. We
say that 𝐾 is Borel complete if every invariant 𝐾 ′ is Borel reducible to it. A theory
𝑇 is Borel complete if the set of models of 𝑇 with universe 𝜔 is Borel complete.
Laskowski [25] showed that theories with ENI-DOP are Borel-complete. Laskowski
and Shelah [26] showed that if 𝑇 is ENI-deep, then 𝑇 is Borel-complete.

This shows that there are some correlations between the model-theoretic notions
and the Borel reducibility notions. Thus, the Borel reducibility is a good candidate
for a complexity notion that extends the complexity notion given by the Main Gap
and allows us to compare the complexity of any two theories. To study this, it re-
quired the development of descriptive set theory at uncountable cardinals extending
the work of Friedman and Stanley.

In the 1990’s the connection between model theory of uncountable models and
descriptive set theory was studied by Mekler, Väänänen, and others, see [34], [52],
and [51]. In 1993, Mekler and Väänänen’s article [34] established the basis for
descriptive set theory at uncountable cardinals (later known as Generalized De-
scriptive Set Theory, abbreviated by GDST ). During the 2000’s Generalized De-
scriptive Set Theory developed further (see [53] chapter 9.6). In 2014, Friedman,
Hyttinen, and Weinstein (né Kulikov) 1 [9], provided significant advances on the
way towards a fully developed Generalized Descriptive Set Theory. In particular,

1Kulikov’s last name changed to Weinstein
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they started a systematic comparison between the Main Gap dividing lines and the
complexity given by Borel reducibility. Apart from the work of Friedman, Hyt-
tinen, and Weinstein, during the 2010’s, Generalized Descriptive Set Theory was
intensively developed and became popular with the works of Lücke, Moreno, Motto
Ros, Schlicht, and others (see [35], [40], and [30]).

By studying the bounded topology, Mekler and Väänänen proved the separation
theorem in Generalized Descriptive Set Theory, [34]. Motivated by the interaction
between Generalized Descriptive Set Theory and Model Theory, Friedman, Hytti-
nen, and Weinstein used the separation result to identify one of Shelah’s dividing
lines of classification theory:

The isomorphism relation of a theory is 𝜅-Borel if and only if it is a classifiable
shallow theory.

In 2020 Calderoni, Mildenberger, and Motto Ros show that the embeddability
relation between 𝜅-sized structures is strongly invariantly universal [4]. This is a
generalization of Louveau-Rosendal result of countable structures [28].

The problem of classifying uncountable structures has been an important theme
in Generalized Descriptive Set Theory. The interaction between Borel reducibil-
ity and classification theory has been one of the biggest motivations behind the
development of Generalized Descriptive Set Theory. Identifying counterparts to
classification theory in the setting of Borel reducibility, has played a main role in
the development of Generalized Descriptive Set Theory.

As it was mentioned above, the main problem in this theme is to find a counter-
part of Shelah’s main division line, classifiable theories vs non-classifiable theories.
Friedman, Hyttinen, and Weinstein (né Kulikov) conjectured that in Generalized
Descriptive Set Theory, the isomorphism relation of a classifiable theory is Borel
reducible to the isomorphism relation of a non-classifiable theory.

Question 1.7 (Friedman-Hyttinen-Kulikov [9]). Work in the generalized Baire
space 𝜅𝜅 with 𝜅<𝜅 = 𝜅. Is the isomorphism relation of any classifiable theory Borel
reducible to the isomorphism relation of any non-classifiable theory?

From their work, Friedman, Hyttinen, and Weinstein conjectured that the answer
to Question 1.7 is “yes”.

1.1. Contributions. In this article we prove Friedman-Hyttinen-Kulikov conjec-
ture. We provide a Borel reducibility counterpart of Shelah’s Main Gap Theorem.

Denote by ∼=𝑇 the isomorphism relation of models of 𝑇 of size 𝜅, →˓𝐵 the Borel
reducibility, and →˓𝑐 the continuous reducibility (this notions are properly defined
in the related work sub-section).

Theorem A (Borel reducibility Main Gap). Suppose 𝜅 = 𝜆+ = 2𝜆, 2c ≤ 𝜆 = 𝜆𝜔1 ,
and 𝑇1 and 𝑇2 are countable complete first-order theories in a countable vocabulary.
If 𝑇1 is a classifiable theory and 𝑇2 is a non-classifiable theory, then

∼=𝑇1
→˓𝑐

∼=𝑇2
and ∼=𝑇2

̸ →˓𝐵
∼=𝑇1

.

We study the size of the gap and compare the complexity of different theories.

Theorem B (Main Gap Dichotomy). Let 𝜅 be inaccessible or 𝜅 = 𝜆+ = 2𝜆, and
2c ≤ 𝜆 = 𝜆𝜔1 . There exists a forcing extension by a < 𝜅-closed 𝜅+-cc forcing
notion in which for any countable first-order theory in a countable vocabulary (not
necessarily complete), 𝑇 , one of the following holds:

∙ ∼=𝑇 is ∆1
1(𝜅);

∙ ∼=𝑇 is Σ1
1(𝜅)-complete.

We study the complexity of the isomorphism relation of models with size smaller
than 𝜅. We show that there is a gap in between the isomorphism relations of models
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with different sizes. Denote by ∼=𝜆
𝑇 the isomorphism relation of models of 𝑇 of size

𝜆 and 𝑖𝑑2 the identity relation of 2𝜅.

Theorem C. Suppose 𝜅 = 𝜆+ = 2𝜆. The following reductions are strict.

(1) Let 2c ≤ 𝜆 = 𝜆<𝜔1 . If 𝑇1 is a classifiable non-shallow theory and 𝑇2 is a
non-classifiable theory, then the following hold:

∙ ∼=𝜆
𝑇2

→˓𝑐 𝑖𝑑2 →˓𝑐
∼=𝑇2 .

∙ ∼=𝜆
𝑇2

→˓𝑐
∼=𝑇1

→˓𝑐
∼=𝑇2

.
(2) Let 𝜅 = ℵ𝛾 be such that ℶ𝜔1(| 𝛾 |) ≤ 𝜅. Suppose 𝑇1 is a classifiable shallow

theory, 𝑇2 a classifiable non-shallow theory, and 𝑇3 non-classifiable theory.
Then

∼=𝑇1
→˓𝐵

∼=𝜆
𝑇3

→˓𝑐
∼=𝑇2

.

The previous results give us a counterpart of Shelah’s main gap in the setting
of Borel reducibility. In particular, Theorem A and B show us that the Borel
reducibility complexity notion is a refinement of the complexity notion given by the
Main Gap. This answers Question 1.7 in a positive way. Recall that this question
was initially asked by Friedman, Hyttinen, and Weinstein in [9], later re-stated in
[Question 3.45, [23]], [Question 4.7 [35]], [10], and [18].

These are the main results, naturally there are other results in this article, many
of them follow from the proofs of the main results. In the effort to answer Question
1.7, the equivalence modulo 𝜔-cofinal, =2

𝜔 (see Definition 1.10), was studied in the
past. From [19] and [8] it is known that the following is consistent:

If 𝑇 is a non-classifiable theory, then =2
𝜔 →˓𝑐

∼=𝑇 .
In [Question 4.9 [35]] it was asked whether this is a theorem of ZFC. We give

a partial answer to this question with Corollary 5.6. Only the case when 𝑇 is a
superstable theory with the DOP remains without an answer.

Question 1.8. Is =2
𝜔 Borel reducible to the isomorphism relation of any superstable

theory with the DOP?

In their work about the Borel reducibility, Mangraviti and Motto Ros [32] were
interested in the gap between classifiable shallow theories and classifiable non-
shallow theories. In [Question 6.9 [32]] it was asked how big is this gap:

Question 1.9. Let 𝜅 = ℵ𝜇 be such that ℶ𝜔1(| 𝜇 |) ≤ 𝜅. How large can be the
gap between ∼=𝑇1

and ∼=𝑇2
when 𝑇1 is classifiable and shallow and 𝑇2 is classifiable

non-shallow?

We study this question and make progress towards its solution, we show that
continuous reductions give us a better picture of the gap, instead of Borel reduc-
tions.

The results presented in this article convince us that the complexity between
the isomorphism relation of theories should be studied by the whole spectrum of
reductions, continuous reductions, Lipschitz reductions, etc, instead of limiting
ourselves to Borel reductions only.

We summarize most of the Borel reducibility properties from the main results
in the following tables. Let 𝜅, 𝜆, and 𝛾 be such that 𝜅 = 𝜅<𝜅 = 𝜆+ = 2𝜆 and
𝜔 ≤ 𝛾 < 𝜆:

∙ The Borel reduction ∼=𝑇 →˓𝑐 =2
𝜇 holds for a countable complete first-order

theory in a countable vocabulary and a regular cardinal 𝜇 < 𝜅, depending
on what kind of theory is 𝑇 and some properties of 𝜆 (see Section 5 for the
definition of the combinatorial principles ♢𝜆 and Dl*𝑆𝜅

𝛾
(Π1

2)).

The following are the possible values of 𝜇:
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∼=𝑇 →˓𝑐 =2
𝜇

Theory 𝜆 = 𝜆𝛾 ♢𝜆 Dl*𝑆𝜅
𝛾
(Π1

2)

Classifiable 𝜔 ≤ 𝜇 ≤ 𝛾 𝜇 = 𝜆 𝜇 = 𝛾

Non-
classifiable

Independent Independent 𝜇 = 𝛾

∙ The Borel reduction =2
𝜇 →˓𝑐

∼=𝑇 holds for a countable complete first-order
theory in a countable vocabulary and a regular cardinal 𝜇 < 𝜅, depending
on what kind of theory is 𝑇 and some properties of 𝜆. Denote by c the
cardinal 2𝜔.

The following are the possible values of 𝜇:

=2
𝜇 →˓𝑐

∼=𝑇

Theory 𝜆 = 𝜆𝛾 2c ≤ 𝜆 = 𝜆𝛾 2c ≤ 𝜆 = 𝜆<𝜆

Classifiable 𝜇 doesn’t
exist

𝜇 doesn’t
exist

𝜇 doesn’t
exist

Stable Unsu-
perstable

𝜇 = 𝜔 𝜇 = 𝜔 𝜇 = 𝜔

Unstable 𝜔 ≤ 𝜇 ≤ 𝛾 𝜔 ≤ 𝜇 ≤ 𝛾 𝜔 ≤ 𝜇 ≤ 𝜆

Superstable
with the
OTOP

𝜔 ≤ 𝜇 ≤ 𝛾 𝜔 ≤ 𝜇 ≤ 𝛾 𝜔 ≤ 𝜇 ≤ 𝜆

Superstable
with the

DOP

? 𝜔1 ≤ 𝜇 ≤ 𝛾 𝜔1 ≤ 𝜇 ≤ 𝜆

1.2. Assumptions. Throughout this article 𝜅 is a regular uncountable cardinal
that satisfies 𝜅<𝜅 = 𝜅, and the theories are first-order countable complete theories
in a countable vocabulary, unless otherwise stated.

In Section 5 we study the Borel reducibility of classifiable theories and non-
classifiable theories. Most of the results concerning non-classifiable theories have
the cardinality assumption:

NC: 𝜅 = 𝜆+ = 2𝜆, and 2c ≤ 𝜆 = 𝜆𝜔1 .
Most of the results concerning classifiable shallow theories have the cardinality

assumption:
CS: 𝜅 = ℵ𝛾 is such that ℶ𝜔1

(| 𝛾 |) ≤ 𝜅.
As it is mentioned by Mangraviti and Motto Ros [second page of [32]], there

are many cardinals satisfying CS and under GCH there are unboundedly many 𝜅’s
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satisfying NC and CS. Thus it is easy to find cardinals satisfying both assumptions
(NC and CS).

1.3. Related work. It was established that Borel reducibility is a good candidate
as a complexity notion in GDST. By understanding some previous results we can
understand the different notions of complexity given by reductions.

The Generalized Baire Space, abbreviated by GBS, is the set 𝜅𝜅 endowed with
the bounded topology. In this topology the basic open sets are of the form

[𝜁] = {𝜂 ∈ 𝜅𝜅 | 𝜁 ⊆ 𝜂}

where 𝜁 ∈ 𝜅<𝜅. The collection of 𝜅-Borel subsets of 𝜅𝜅 is the smallest set that con-
tains the basic open sets and is closed under complement, unions and intersections
both of length 𝜅. The sets of this collection are called 𝜅-Borel. A subset 𝑋 ⊆ 𝜅𝜅 is
a Σ1

1(𝜅) subset of 𝜅𝜅 if there is a closed set 𝑌 ⊆ 𝜅𝜅 × 𝜅𝜅 such that the projection
pr(𝑌 ) := {𝑥 ∈ 𝜅𝜅 | ∃𝑦 ∈ 𝜅𝜅, (𝑥, 𝑦) ∈ 𝑌 } is equal to 𝑋. These definitions also
extend to the product space 𝜅𝜅 × 𝜅𝜅. A subset 𝑋 ⊆ 𝜅𝜅 is a ∆1

1(𝜅) set if 𝑋 and its
complement are Σ1

1(𝜅).
The Generalized Cantor Space, abbreviated by GCS, is the subspace 2𝜅 with

the induced topology. The main equivalence relations that we will use are the
equivalence modulo 𝜇-cofinal, =2

𝜇, and the isomorphism relation, ∼=𝑇 . The following
relations can be defined in any subspace 𝛽𝜅.

Definition 1.10. Given 𝑆 ⊆ 𝜅 and 𝛽 ≤ 𝜅, we define the equivalence relation

=𝛽
𝑆 ⊆ 𝛽𝜅 × 𝛽𝜅, as follows

𝜂 =𝛽
𝑆 𝜉 ⇐⇒ {𝛼 < 𝜅 | 𝜂(𝛼) ̸= 𝜉(𝛼)} ∩ 𝑆 is non-stationary.

Notice that =𝛽
𝑆 is an interesting relation when 𝑆 is stationary, otherwise it has

only one equivalence class. Let 𝜇 < 𝜅 be a regular cardinal. We will denote by =𝛽
𝜇

the relation =𝛽
𝑆 when 𝑆 is the stationary set 𝑆𝜅

𝜇 := {𝛼 < 𝜅 | 𝑐𝑓(𝛼) = 𝜇}. Let us

denote by 𝐶𝑈𝐵 the club filter on 𝜅 and =𝛽
𝐶𝑈𝐵 the relation =𝛽

𝑆 when 𝑆 = 𝜅.
To define the isomorphism relation we need to code structures of size 𝜅 with

elements of the GBS. We can code structures of any size (not bigger than 𝜅) with
elements of GBS.

Definition 1.11. Let 𝜔 ≤ 𝜇 ≤ 𝜅 be a cardinal and L = {𝑄𝑚 | 𝑚 ∈ 𝜔} be a count-
able relational language. Fix a bijection 𝜋𝜇 between 𝜇<𝜔 and 𝜇. For every 𝜂 ∈ 𝜅𝜅

define the structure 𝒜𝜂↾𝜇 with domain 𝜇 as follows: For every tuple (𝑎1, 𝑎2, . . . , 𝑎𝑛)
in 𝜇𝑛

(𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝑄𝒜𝜂↾𝜇
𝑚 ⇔ 𝑄𝑚 has arity 𝑛 and 𝜂(𝜋𝜇(𝑚, 𝑎1, 𝑎2, . . . , 𝑎𝑛)) > 0.

For every first-order theory in a relational countable language (not necessarily
complete), we have coded the models of 𝑇 of size 𝜇 ≤ 𝜅 in the GBS, 𝜅𝜅. In the same
way we can define these structures in the GCS, 2𝜅. Notice that different elements
of 𝜅𝜅 may code the same structure. On the other hand, any element of 𝜅𝜅 codes
different structures, all of them of different sizes.

Definition 1.12. Let 𝜔 ≤ 𝜇 ≤ 𝜅 be a cardinal and 𝑇 a first-order theory in a
relational countable language. We define the isomorphism relation of models of
size 𝜇, ∼=𝜇

𝑇 ⊆ 𝜅𝜅 × 𝜅𝜅, as the relation

{(𝜂, 𝜉)|(𝒜𝜂↾𝜇 |= 𝑇,𝒜𝜉↾𝜇 |= 𝑇,𝒜𝜂↾𝜇
∼= 𝒜𝜉↾𝜇) or (𝒜𝜂↾𝜇 ̸|= 𝑇,𝒜𝜉↾𝜇 ̸|= 𝑇 )}

Let us denote by ∼=𝑇 the isomorphism relation of models of size 𝜅 of 𝑇 (i.e. ∼=𝜅
𝑇 ).

To simplify notation we will refer to ∼=𝑇 as the isomorphism relation of 𝑇 . We will
also denote by 𝒜𝜂 the structure 𝒜𝜂↾𝜅, for obvious reasons.
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By defining a good complexity notion for equivalence relations, we can study the
complexity of 𝑇 by studying the complexity of ∼=𝑇 . Let 𝛽, 𝜃 ∈ {2, 𝜅}, and 𝐸1 and
𝐸2 be equivalence relations on 𝛽𝜅 and 𝜃𝜅, respectively. We say that 𝐸1 is reducible
to 𝐸2 if there is a function 𝑓 : 𝛽𝜅 → 𝜃𝜅 that satisfies

(𝜂, 𝜉) ∈ 𝐸1 ⇐⇒ (𝑓(𝜂), 𝑓(𝜉)) ∈ 𝐸2.

We call 𝑓 a reduction of 𝐸1 to 𝐸2 and we denote by 𝐸1 →˓𝑟 𝐸2 the existence of a
reduction of 𝐸1 to 𝐸2. It is clear that 𝐸1 →˓𝑟 𝐸2 holds if and only if 𝐸1 doesn’t
have more equivalence classes than 𝐸2.

When we restrict ourselves to the isomorphism relation, this complexity notion
is equivalent to the model theory notion give by the number of non-isomorphic
models,

∼=𝑇1 →˓𝑟
∼=𝑇2 ⇔ 𝐼(𝜅, 𝑇1) ≤ 𝐼(𝜅, 𝑇2).

This complexity notion is not good for our purposes, since we want to compare the
complexity of not classifiable shallow theories (by Theorem 1.2, these theories have
2𝜅 non-isomorphic models). By demanding more on the reduction function (e.g.
continuity), we obtain stronger complexity notions.

A subset 𝐷 ⊆ 𝛽𝜅 is said to be comeager if 𝐷 ⊇
⋂︀
𝒟 for some non-empty family

𝒟 of at most 𝜅-many dense open subsets of 𝛽𝜅. A subset of 𝛽𝜅 is said to be meager
iff its complement is comeager.

Definition 1.13 (Reductions). Apart from a “cardinality” reduction, →˓𝑟, we de-
fine the following notions which allow us to have a better spectrum of complexities.

∙ Baire measurable reduction. A subset 𝐵 ⊆ 𝛽𝜅 is said to have the Baire
property iff there is an open set 𝐴 ⊆ 𝛽𝜅 for which the symmetric difference
𝐴△𝐵 is meager.

A function 𝑓 : 𝛽𝜅 → 𝜃𝜅 is said to be Baire measurable if for any open set
𝐴 ⊆ 𝜃𝜅, 𝑓−1[𝐴] has the Baire property. The existence of a Baire measurable
reduction of 𝐸0 to 𝐸1 is denoted by 𝐸0 →˓𝐵𝑀 𝐸1.

∙ Borel reduction. A function 𝑓 : 𝛽𝜅 → 𝜃𝜅 is said to be 𝜅-Borel if for
any open set 𝐴 ⊆ 𝜃𝜅, 𝑓−1[𝐴] is a 𝜅-Borel set. The existence of a 𝜅-Borel
reduction of 𝐸0 to 𝐸1 is denoted by 𝐸0 →˓𝐵 𝐸1

2.
∙ Continuous reduction. The existence of a continuous reduction of 𝐸0 to
𝐸1 is denoted by 𝐸0 →˓𝑐 𝐸1.

∙ Lipschitz reduction. For all 𝜂, 𝜉 ∈ 𝛽𝜅, denote

∆(𝜂, 𝜉) := min({𝛼 < 𝜅 | 𝜂(𝛼) ̸= 𝜉(𝛼)} ∪ {𝜅}).

A function 𝑓 : 𝛽𝜅 → 𝜃𝜅 is said to be Lipschitz if for all 𝜂, 𝜉 ∈ 𝛽𝜅,

∆(𝜂, 𝜉) ≤ ∆(𝑓(𝜂), 𝑓(𝜉)).

The existence of a Lipschitz reduction of 𝐸0 to 𝐸1 is denoted by 𝐸0 →˓𝐿 𝐸1.

Notice that the reductions are defined from weaker to stronger, e.g a Lipschitz
reduction is a continuous reduction. Different notions of reduction provide us with a
method to compare the complexities of two equivalence relations. Two equivalence
relations have “very similar” complexities if they are Lipschitz bireducible. On the
other hand, The complexity of 𝐸0 is “far” from the complexity of 𝐸1 if 𝐸0 →˓𝐿 𝐸1

and 𝐸1 ̸ →˓𝐵𝑀 𝐸0. Notice that ̸ →˓𝑟 is stronger than ̸ →˓𝐵𝑀 .
It is clear that the isomorphism relation can be also defined in the GCS. Never

the less the isomorphism relation of 𝑇 in GBS and in GCS are Lipschitz bireducible

2We use “→˓𝐵” instead of “≤𝐵”, because we will deal with the equivalence relations =𝛽
𝑆

(Definition 1.10) and the notation could become heavy for the reader.
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by the function ℱ : 𝜅𝜅 → 2𝜅 given by

ℱ(𝜂)(𝛼) =

{︃
1 if (𝜂)(𝛼) ̸= 0

0 otherwise.

Since they are Lipschitz bireducible, we will use ∼=𝑇 to denote both.
During the study of the interaction between classification theory and GDST,

Friedman, Hyttinen, and Weinstein found some classification theory dividing lines
in GDST. This supported the idea that there is a counterpart of the Main Gap,
which ended in their conjecture.

Fact 1.14 (Friedman-Hyttinen-Kulikov).

(1) Let 𝜅<𝜅 = 𝜅 > 2𝜔. If 𝑇 is classifiable and shallow, then ∼=𝑇 is 𝜅-Borel.
([9], Theorem 68)

(2) If 𝑇 is classifiable non-shallow, then ∼=𝑇 is ∆1
1(𝜅) not 𝜅-Borel. ([9], Theo-

rem 69 and 70)
(3) If 𝑇 is unstable or stable with the OTOP or superstable with the DOP and

𝜅 > 𝜔1, then ∼=𝑇 is not ∆1
1(𝜅). ([9], Theorem 71)

(4) If 𝑇 is stable unsuperstable, then ∼=𝑇 is not 𝜅-Borel. ([9], Theorem 72)

From Fact 1.2 we conclude that if ∼=𝑇 has less than 2𝜅 equivalence classes, then
∼=𝑇 is 𝜅-Borel. When we turn our attention to classifiable shallow theories, we
realize that these theories are classified by their depth. This raises the question
whether the depth of a theory is related to the Borel rank of the isomorphism
relation of the theory.

Let us denote by B(𝜅) the set of 𝜅-Borel sets. We define the 𝜅-Borel hierarchy
by the following recursive definition.

Σ0
1(𝜅) := {𝐴 ⊂ 𝜅𝜅 | 𝐴 is open},

Π0
1(𝜅) := {𝐴 ⊂ 𝜅𝜅 | 𝐴 is closed},

Σ0
𝛼(𝜅) :=

⎧⎨⎩⋃︁
𝛾<𝜅

𝐴𝛾 ⊂ 𝜅𝜅 | 𝐴𝛾 ∈
⋃︁

1≤𝛽<𝛼

Π0
𝛽(𝜅)

⎫⎬⎭ ,

Π0
𝛼(𝜅) := {𝜅𝜅∖𝐴 | 𝐴 ∈ Σ0

𝛼(𝜅)}.
The set of 𝜅-Borel sets is

B(𝜅) =
⋃︁

1≤𝛼<𝜅+

Σ0
𝛼(𝜅) =

⋃︁
1≤𝛼<𝜅+

Π0
𝛼(𝜅)

If 𝐴 is a 𝜅-Borel set, the smallest ordinal 1 ≤ 𝛼 ≤ 𝜅+ such that 𝐴 ∈ Σ0
𝛼(𝜅)∪Π0

𝛼(𝜅)
is called the Borel rank of 𝐴 and it is denoted by 𝑟𝑘𝐵(𝐴).

Mangraviti and Motto Ros found a connection between the Borel rank of ∼=𝑇

and the depth of 𝑇 , when 𝑇 is a classifiable shallow theory.

Fact 1.15 (Descriptive Main Gap; Mangraviti-Motto Ros, [32] Theorem 1.9). Let
𝜅 be such that 𝜅<𝜅 = 𝜅 > 2ℵ0 . If 𝑇 is a classifiable shallow theory of depth 𝛼, then

𝑟𝑘𝐵(∼=𝑇 ) ≤ 4𝛼.

In the same article they studied the Borel reducibility between classifiable shallow
theories and not classifiable shallow theories.

Fact 1.16 (Mangraviti-Motto Ros, [32], Proposition 6.7). Let 𝜅 = ℵ𝛾 be such that
ℶ𝜔1

(| 𝛾 |) ≤ 𝜅 (CS assumption). Suppose 𝑇1 is a classifiable shallow and 𝑇2 not.
Then there is an equivalence relation 𝐸 on 2𝜅 such that

∼=𝑇1
→˓𝐵 𝐸 →˓𝐵

∼=𝑇2
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and
∼=𝑇2

̸ →˓𝑟 𝐸 ̸ →˓𝑟
∼=𝑇1

.

What Mangraviti and Motto Ros proved was actually the following proposition,
which is stronger.

Proposition 1.17 (Mangraviti-Motto Ros, [32]). Let 𝐸1 be a 𝜅-Borel equivalence
relation with 𝛾 ≤ 𝜅 equivalence classes and 𝐸2 be an equivalence relation with 𝜃
equivalence classes. If 𝛾 ≤ 𝜃, then 𝐸1 →˓𝐵 𝐸2.

This implies (under CS assumption, 𝑇1, and 𝑇2 as in Fact 1.16) that if ∼=𝑇1
and

∼=𝑇2
have the same number of equivalence classes, then they are Borel bireducible.

For all cardinals 0 < 𝜚 ≤ 𝜅 let us define the counting 0-classes equivalence
relation 0𝜚 ∈ 𝜅𝜅 × 𝜅𝜅 as follows: 𝜂 0𝜚 𝜉 if and only if one of the following holds:

∙ 𝜚 is finite:
– 𝜂(0) = 𝜉(0) < 𝜚− 1;
– 𝜂(0), 𝜉(0) ≥ 𝜚− 1.

∙ 𝜚 is infinite:
– 𝜂(0) = 𝜉(0) < 𝜚;
– 𝜂(0), 𝜉(0) ≥ 𝜚.

It is clear that for all 𝜚 ≤ 𝜅, 0𝜚 has 𝜚 equivalence classes. By the previous propo-
sition, if ∼=𝑇 has 𝜚 ≤ 𝜅 equivalence classes, then ∼=𝑇 and 0𝜚 are Borel bireducible.
We might think that when ∼=𝑇 has 𝜚 ≤ 𝜅 equivalence classes, ∼=𝑇 and 0𝜚 have the
“same” complexity. This is very counter-intuitive, since 0𝜚 is a very simple equiva-
lence relation. In Lemma 5.18 we will show that it is not the case, e.g. 0𝜚 →˓𝑐

∼=𝑇

and ∼=𝑇 ̸ →˓𝑐 0𝜚.
Shelah developed stability theory and classification theory to answer Morley’s

conjecture. It is expected that the study of the Borel reducibility Main Gap can be
used to study Morley’s conjecture from the point of view of GDST.

We ask whether ∼=𝜇
𝑇 is Borel reducible to ∼=𝑇 for all 𝑇 first-order theory in a

relational countable language, and 𝜔 < 𝜇 < 𝜅?
By a simple observation we can answer this question for some theories using

Fact 1.3 and Proposition 1.17. Since 𝜅<𝜅 = 𝜅, for all 𝜇 < 𝜅 and for all first-
order theories in a relational countable language 𝑇 , the relation ∼=𝜇

𝑇 has at most 𝜅
equivalence classes. Therefore by Fact 1.3 and Proposition 1.17, if ∼=𝜇

𝑇 is 𝜅-Borel,
then ∼=𝜇

𝑇 →˓𝐵
∼=𝑇 . The following Fact and Fact 1.14 (1) tell us that ∼=𝜇

𝑇 →˓𝐵
∼=𝑇 holds

for classifiable shallow theories (when 𝜅 > 2𝜔). We generalize this in Section 5.

Fact 1.18 (Folklore). Suppose 𝐸0 →˓𝑟 𝐸1. Then the following hold:

∙ If 𝐸1 is 𝜅-Borel and 𝐸0 →˓𝐵 𝐸1, then 𝐸0 is 𝜅-Borel.
∙ If 𝐸1 is ∆1

1(𝜅) and 𝐸0 →˓𝐵 𝐸1, then 𝐸0 is ∆1
1(𝜅).

∙ If 𝐸1 is open and 𝐸0 →˓𝑐 𝐸1, then 𝐸0 is open.

A proof of Fact 1.18 can be found in [[18] Theorem 7]. The proof is for 𝜅-Borel*

sets, a more general class of sets (defined by Blackwell [3], see also [34]).
As it was discussed previously, categoricity played a historical important role in

the study of the spectrum function. It is not a surprise that 𝜅-categoricity can be
characterized in GDST.

Fact 1.19 (Mangraviti-Motto Ros, [32], Theorem 3.3). Let 𝑇 be a countable first-
order theory in a countable vocabulary (not necessarily complete). 𝑇 is 𝜅-categorical
if and only if 𝑟𝑘𝐵(∼=𝑇 ) = 0, i.e. ∼=𝑇 is clopen.

Fact 1.14, led Friedman, Hyttinen, and Weinstein to negative results about the
Borel reducibility between non-classifiable theories and classifiable theories. This
was an important step to support their conjecture.
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From Fact 1.14 and Fact 1.18, Friedman, Hyttinen, and Weinstein deduced that
if 𝑇1 is classifiable and 𝑇2 is unstable or stable with the OTOP or superstable with
the DOP and 𝜅 > 𝜔1, then ∼=𝑇2 ̸ →˓𝐵

∼=𝑇1 .
They introduced the equivalence modulo different cofinalities to study the Borel

reducibility of non-classifiable theories. This led them to positive results about
their conjecture.

Fact 1.20 (Friedman-Hyttinen-Kulikov, [9] Theorem 79). Suppose that 𝜅 = 𝜆+ =
2𝜆 such that 𝜆<𝜆 = 𝜆. If 𝑇 is unstable or superstable with the OTOP, then =2

𝜆 →˓𝑐
∼=𝑇 . If additionally 𝜆 ≥ 2𝜔, then =2

𝜆 →˓𝑐
∼=𝑇 holds also for superstable 𝑇 with the

DOP.

Fact 1.21 (Friedman-Hyttinen-Kulikov, [9] Theorem 86). Suppose that 𝜅 is such
that for all 𝜆 < 𝜅, 𝜆𝜔 < 𝜅. If 𝑇 is a stable unsuperstable theory, then =2

𝜔 →˓𝑐
∼=𝑇 .

In [18], Hyttinen, Moreno, and Weinstein made notable progress by proving that
the conjecture is consistent. The authors use the technique developed in [20].

Fact 1.22 (Consistency: Borel reducibility Main Gap; Hyttinen-Kulikov-Moreno,
[18] Theorem 3.8). Suppose 𝜅 = 𝜅<𝜅 = 𝜆+, 2𝜆 > 2𝜔 and 𝜆<𝜆 = 𝜆. The following
statement is consistent: if 𝑇1 is a classifiable theory and 𝑇2 is not, then ∼=𝑇1 is
Borel reducible to ∼=𝑇2 and there are 2𝜅 equivalent relations strictly between them.

In the same article, using Fact 1.21 with the technique developed in Fact 1.22,
it was proved the case of stable unsuperstable theories in ZFC.

Fact 1.23 (Strictly stable; Hyttinen-Kulikov-Moreno, [18] Corollary 2). Suppose
that 𝜅 = 𝜆+ and 𝜆𝜔 = 𝜆. If 𝑇1 is a classifiable theory and 𝑇2 is a stable unsuper-
stable theory, then ∼=𝑇1

→˓𝑐
∼=𝑇2

and ∼=𝑇2
̸ →˓𝐵

∼=𝑇1
.

Years later, this was improved by the author to cover the case of unstable theo-
ries.

Fact 1.24 (Unsuperstable; Moreno, [37] Corollary 4.12). Suppose 𝜅 = 𝜆+ = 2𝜆

and 𝜆𝜔 = 𝜆. If 𝑇1 is a classifiable theory, and 𝑇2 is an unsuperstable theory, then
∼=𝑇1

→˓𝑐
∼=𝑇2

and ∼=𝑇2
̸ →˓𝐵

∼=𝑇1
.

The proof of Fact 1.24 uses a different approach from the one exhibited in Fact
1.20 and Fact 1.21. This is why Fact 1.24 is a result about unsuperstable theories
and not just about unstable theories.

Unfortunately the technique used in the proof of Fact 1.24 was limited to unsu-
perstabel theories and could not cover superstable theories with the OTOP or the
DOP. This is because Fact 1.24 uses a tree construction, which is a construction for
unsuperstable theories. In Theorem 5.5 we extend this construction to superstable
theories with the OTOP or the DOP by using a density argument, coding trees by
linear orders, and a homogeneity argument.

Fact 1.22 shows us that it is possible to force the complexities of classifiable
theories and non-classifiable theories to be far apart, in the sense of having 2𝜅

equivalence relations strictly in between. Fact 1.22 doesn’t tell us how different are
the complexity of different non-classifiable theories. In [19] it was compared the
complexity of different non-classifiable theories. Hyttinen, Moreno, and Weinstein
proved that the following is consistent:

The isomorphism relations of two different non-classifiable theories are continu-
ous bireducible.

They show that this holds in the constructable model 𝐿, actually something
stronger was proved. An equivalence relation 𝐸 is Σ1

1(𝜅)-complete if 𝐸 is a Σ1
1(𝜅)

set and every Σ1
1(𝜅) equivalence relation 𝑅 is Borel reducible to 𝐸.
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Fact 1.25 (𝐿-Main Gap Dichotomy; Hyttinen-Kulikov-Moreno, [19] Theorem 4.11).
(𝑉 = 𝐿). Suppose 𝜅 = 𝜆+ and 𝜆 is a regular uncountable cardinal. If T is a count-
able first-order theory in a countable vocabulary, not necessarily complete, then one
of the following holds:

∙ ∼=𝑇 is ∆1
1(𝜅).

∙ ∼=𝑇 is Σ1
1(𝜅)-complete.

From their work ([7] and [8]), Fernandes, Moreno, and Rinot show that if
𝜅 = 𝜆+ = 2𝜆, 𝜆<𝜆 = 𝜆, and 𝜆 ≥ 2𝜔, then there is a < 𝜅-closed 𝜅+-cc forcing
extension in which the previous dichotomy holds. Even thought we now know that
the dichotomy can be forced, we are still restricted to the cardinality assumptions,
in particular “𝜅 is the successor of 𝜆 and 𝜆<𝜆 = 𝜆”. We improve the dichotomy in
the direction of these two assumptions.

1.4. Outline. In Section 2 we generalize the notion of (𝜅, 𝑏𝑠, 𝑏𝑠)-nice, to construct
𝜅-colorable 𝜀-dense linear orders. We study the theory of 𝜅-colorable linear or-
ders from an abstract point of view and obtain an abstract generalization of the
construction introduced in [37].

In Section 3 we present a detail study of the coloured ordered trees of any height.
We use 𝜅-colorable linear orders to construct coloured ordered trees. Coloured
ordered trees will be used to construct skeletons of Ehrenfeucht-Mostowski models.

In Section 4 we use coloured ordered trees to construct Ehrenfeucht-Mostowski
models of different non-classifiable theories. Each non-classifiable theory demands
different assumptions on 𝜅 to construct the models. Nevertheless, we show the
isomorphism theorem, which is satisfied by all non-classifiable theories.

In Section 5 we use the models from Section 4 to prove Theorem A. We study
how big is the Borel reducibility gap and prove Theorem B. We finish by studying
Morley’s conjecture from a GDST point of view and prove Theorem C.

In Section 6 we study in more detail the machinery developed on the proof of
Theorem A, B, and C. We introduce the 𝐹𝜙

𝜔 -isolation, the idea behind the con-
struction of the 𝜅-colorable linear orders. We introduce the 𝑆-recursive functions,
most of the known reductions are 𝑆-recursive reductions. We introduce the count-
ing 𝛼-classes equivalent relation and give a detail picture of some gaps. We use the
idea of 𝜅-Borel*-sets construct a game between models.

2. Linear Orders

The notion of 𝜅-colorable linear order was introduced in [37] to construct models
of unsuperstable theories and prove Fact 1.24. 𝜅-colorable linear order is a satura-
tion notion (see Section 6) that allows us to order colorable trees while preserving
the isomorphism of trees, i.e. it allows us to merge Shelah’s ordered trees from [46]
and Hyttinen-Kulikov’s coloured trees from [17].

In [37] a 𝜅-colorable linear order was constructed in an inductive way. Due
to the nature of the construction, the 𝜅-colorable linear order presented in [37]
has fundamental limitations, e.g. density arguments are not compatible with 𝜅-
colorable (𝜅, 𝑏𝑠, 𝑏𝑠)-nice linear order. To overcome these limitations we will make
an abstract generalization of the inductive construction presented in [37].

2.1. Constructing linear orders. The goal of the construction of [37] was to
obtain a linear order with the following properties (definitions below):

∙ (< 𝜅, 𝑏𝑠)-stable
∙ (𝜅, 𝑏𝑠, 𝑏𝑠)-nice
∙ 𝜅-colorable.
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At first sight, these three notions are not compatible, a stability notion, a density
notion, and a saturation notion. Not only these notions are compatible, as it was
showed in [37], there is a dense linear order with these properties. To extend the
results [37] to other non-classifiable theories, we will need an 𝜀-dense linear order.
To construct such a linear order, we have to generalize the notion of (𝜅, 𝑏𝑠, 𝑏𝑠)-nice
to (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice.

Through this section, we will show the existence of such an order (under certain
cardinality assumptions).

If there is a 𝜀-dense model of DLO with size smaller than 𝜅, then there is a model
of DLO of size 𝜅 such that it is

∙ (< 𝜅, 𝑏𝑠)-stable
∙ (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice
∙ 𝜅-colorable
∙ 𝜀-dense.

Before we start with the construction, let us recall the definitions and results
that play a role in the construction of [37]. Let us start by (< 𝜅, 𝑏𝑠)-stable and
(𝜅, 𝑏𝑠, 𝑏𝑠)-nice, which were introduced by Shelah in [46].

Definition 2.1 (𝜅-representation). Let 𝐴 be an arbitrary set of size at most 𝜅.
The sequence A = ⟨𝐴𝛼 | 𝛼 < 𝜅⟩ is a 𝜅-representation of 𝐴, if ⟨𝐴𝛼 | 𝛼 < 𝜅⟩ is
an increasing continuous sequence of subsets of 𝐴, for all 𝛼 < 𝜅, |𝐴𝛼| < 𝜅, and⋃︀

𝛼<𝜅𝐴𝛼 = 𝐴.

Notice that for any two representations A and A′ of 𝐴, there is a club 𝐶 such
that for all 𝛼 ∈ 𝐶, 𝐴𝛼 = 𝐴′

𝛼.
For any ℒ-structure 𝒜 we denote by at the set of atomic formulas of ℒ and by bs

the set of basic formulas of ℒ (atomic formulas and negation of atomic formulas).
For all ℒ-structure 𝒜, 𝑎 ∈ 𝒜, and 𝐵 ⊆ 𝒜 we define

𝑡𝑝Δ(𝑎,𝐵,𝒜) = {𝜙(𝑥, 𝑏) | 𝒜 |= 𝜙(𝑎, 𝑏), 𝜙 ∈ ∆, 𝑏 ∈ 𝐵}

for ∆ a set of formulas of ℒ. Example of theses types are 𝑡𝑝𝑎𝑡(𝑎,𝐵,𝒜) and
𝑡𝑝𝑏𝑠(𝑎,𝐵,𝒜).

Definition 2.2. Let 𝒜 be a model, 𝑎 ∈ 𝒜, 𝐵,𝐷 ⊆ 𝒜. We say that 𝑡𝑝𝑏𝑠(𝑎,𝐵,𝒜)
(bs,bs)-splits over 𝐷 ⊆ 𝒜 if there are 𝑏1, 𝑏2 ∈ 𝐵 such that 𝑡𝑝𝑏𝑠(𝑏1, 𝐷,𝒜) =
𝑡𝑝𝑏𝑠(𝑏2, 𝐷,𝒜) but 𝑡𝑝𝑏𝑠(𝑎

⌢𝑏1, 𝐷,𝒜) ̸= 𝑡𝑝𝑏𝑠(𝑎
⌢𝑏2, 𝐷,𝒜).

Definition 2.3. Let |𝐴| ≤ 𝜅, for a 𝜅-representation A of 𝐴. Define 𝑆𝑝𝑏𝑠(A) as

𝑆𝑝𝑏𝑠(A) = {𝛿 < 𝜅 | 𝛿 a limit ordinal, ∃𝑎 ∈ 𝐴 [∀𝛽 < 𝛿 (𝑡𝑝𝑏𝑠(𝑎,𝐴𝛿, 𝐴) (bs,bs)-splits over 𝐴𝛽)]}.

Definition 2.4. ∙ Let 𝒜 be a model of size at most 𝜅. We say that 𝐴 is
(𝜅, 𝑏𝑠, 𝑏𝑠)-nice if 𝑆𝑝𝑏𝑠(A) =2

𝐶𝑈𝐵 ∅.
∙ A linear order 𝐴 is (< 𝜅, 𝑏𝑠)-stable if for every 𝐵 ⊆ 𝐴 of size smaller than
𝜅,

𝜅 > |{𝑡𝑝𝑏𝑠(𝑎,𝐵,𝐴) | 𝑎 ∈ 𝐴}|.

As it was mentioned before, (< 𝜅, 𝑏𝑠)-stable and (𝜅, 𝑏𝑠, 𝑏𝑠)-nice were used in
[37] to construct continuous reductions from classifiable theories to unsuperstable
theories. Unfortunately, this is not enough when we deal with superstable non-
classifiable theories. We will need to generalize (𝜅, 𝑏𝑠, 𝑏𝑠)-nice to construct models
of superstable non-classifiable theories.

Fact 2.5 (Hyttinen-Tuuri, [21] Lemma 8.12). Let 𝐴 be a linear order of size 𝜅 and
⟨𝐴𝛼 | 𝛼 < 𝜅⟩ a 𝜅-representation. Then the following are equivalent:

(1) 𝐴 is (𝜅, 𝑏𝑠, 𝑏𝑠)-nice.
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(2) There is a club 𝐶 ⊆ 𝜅, such that for all limit 𝛿 ∈ 𝐶, for all 𝑥 ∈ 𝐴 there is
𝛽 < 𝛿 such that one of the following holds:

∙ ∀𝜎 ∈ 𝐴𝛿[𝜎 ≥ 𝑥⇒ ∃𝜎′ ∈ 𝐴𝛽 (𝜎 ≥ 𝜎′ ≥ 𝑥)]
∙ ∀𝜎 ∈ 𝐴𝛿[𝜎 ≤ 𝑥⇒ ∃𝜎′ ∈ 𝐴𝛽 (𝜎 ≤ 𝜎′ ≤ 𝑥)]

This characterization shows us that (𝜅, 𝑏𝑠, 𝑏𝑠)-nice is a notion of density. This
motivates the definition of (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice, which generalizes (𝜅, 𝑏𝑠, 𝑏𝑠)-nice in the
direction of density. This notion will allow us to abstract the construction from
[37].

Definition 2.6. Let 𝜀 < 𝜅 be a regular cardinal, 𝐴 be a linear order of size 𝜅
and ⟨𝐴𝛼 | 𝛼 < 𝜅⟩ a 𝜅-representation. Then 𝐴 is (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice if there is a club
𝐶 ⊆ 𝜅, such that for all limit 𝛿 ∈ 𝐶 with 𝑐𝑓(𝛿) ≥ 𝜀, for all 𝑥 ∈ 𝐴 there is 𝛽 < 𝛿
such that one of the following holds:

∙ ∀𝜎 ∈ 𝐴𝛿[𝜎 ≥ 𝑥⇒ ∃𝜎′ ∈ 𝐴𝛽 (𝜎 ≥ 𝜎′ ≥ 𝑥)]
∙ ∀𝜎 ∈ 𝐴𝛿[𝜎 ≤ 𝑥⇒ ∃𝜎′ ∈ 𝐴𝛽 (𝜎 ≤ 𝜎′ ≤ 𝑥)]

By Fact 2.5, 𝐴 is (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜔)-nice if and only if it is (𝜅, 𝑏𝑠, 𝑏𝑠)-nice. Finally, we
provide the definition of 𝜅-colorable linear order, introduced in [37] to construct
order coloured trees.

Definition 2.7. Let 𝐼 be a linear order of size 𝜅. We say that 𝐼 is 𝜅-colorable
if there is a function 𝐹 : 𝐼 → 𝜅 such that for all 𝐵 ⊆ 𝐼, |𝐵| < 𝜅, 𝑏 ∈ 𝐼∖𝐵, and
𝑝 = 𝑡𝑝𝑏𝑠(𝑏, 𝐵, 𝐼) such that the following hold: For all 𝛼 ∈ 𝜅,

|{𝑎 ∈ 𝐼 | 𝑎 |= 𝑝 & 𝐹 (𝑎) = 𝛼}| = 𝜅.

The idea behind 𝜅-colorable is that any realizable type over a small set, is realized
by 𝜅 many elements. In section 6 we discuss the relation between 𝜅-colorable and
the notion of F-saturation from [47] Chapter 4. We consider 𝜅-colorable a saturation
notion.

Fact 2.8 (Moreno, [37] Theorem 2.25). There is a (< 𝜅, 𝑏𝑠)-stable (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜔)-nice
𝜅-colorable linear order of size 𝜅.

To construct models of non-classifiable superstable theories, we will need dense
linear orders. Thus, we need to add a new density property to the linear order of
Fact 2.8.

Definition 2.9. Let 𝐼 be a linear order of size 𝜅 and 𝜀 a regular cardinal smaller
than 𝜅. We say that 𝐼 is 𝜀-dense if the following holds.

If 𝐴,𝐵 ⊆ 𝐼 are subsets of size less than 𝜀 such that for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵,
𝑎 < 𝑏, then there is 𝑐 ∈ 𝐼, such that for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, 𝑎 < 𝑐 < 𝑏.

We want to construct a (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice 𝜇-dense linear order. It is clear that
the difficulty of the construction lies on the fact that both are density notions with
different properties. It is clear that if 𝑙 is a (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice linear order, then for
all 𝜇 ≥ 𝜀, 𝑙 is a (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜇)-nice linear order. On the other hand if 𝑙 is a 𝜇-dense
linear order, then for all 𝜀 ≤ 𝜇, 𝑙 is a 𝜀-dense linear order. Therefore, we will focus
our study on the case of (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice 𝜀-dense linear order.

Notation. Since we will only use basic formulas when dealing with these notions,
we will denote by (𝜅, 𝜀)-nice and (< 𝜅)-stable the notions (𝜅, 𝑏𝑠, 𝑏𝑠, 𝜀)-nice and
(< 𝜅, 𝑏𝑠)-stable, respectively.

We can now proceed with the construction of the desired linear order. Let us
fix a regular cardinal 𝜔 ≤ 𝜀 < 𝜅. From now on let 𝒬 be a model of 𝐷𝐿𝑂 of size
𝜃 < 𝜅 (the theory of dense linear orderings without end-points), that is 𝜀-dense. It
is clear that 𝜃 ≥ 𝜀.
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Definition 2.10. Let 𝜅 ×𝒬 be ordered by the lexicographic order, ℐ0 be the set
of functions 𝑓 : 𝜀 → 𝜅 × 𝒬 such that 𝑓(𝛼) = (𝑓1(𝛼), 𝑓2(𝛼)), for which |{𝛼 ∈ 𝜀 |
𝑓1(𝛼) ̸= 0}| is smaller than 𝜀. If 𝑓, 𝑔 ∈ ℐ0, then 𝑓 < 𝑔 if and only if 𝑓(𝛼) < 𝑔(𝛼),
where 𝛼 is the least number such that 𝑓(𝛼) ̸= 𝑔(𝛼).

Now let us use the order ℐ0 to construct an 𝜀-dense (< 𝜅)-stable (𝜅, 𝜀)-nice
𝜅-colorable linear order.

Let us fix 𝜏 ∈ 𝒬. Let 𝐼 be the set of functions 𝑓 : 𝜀→ ({0}×ℐ0)∪ (𝜅×𝒬) such
that the following hold

∙ 𝑓 ↾ {0} : {0} → {0} × ℐ0.
∙ 𝑓 ↾ 𝜀∖{0} : 𝜀∖{0} → 𝜅×𝒬;
∙ There is 𝛼 < 𝜀 ordinal such that ∀𝛽 > 𝛼, 𝑓(𝛽) = (0, 𝜏). We say that the

least 𝛼 with such property is the depth of 𝑓 and we denote it by 𝑑𝑝(𝑓).
∙ There are functions 𝑓1 : 𝜀 → 𝜅 and 𝑓2 : 𝜀 → ℐ0 ∪ 𝒬 such that 𝑓(𝛽) =

(𝑓1(𝛽), 𝑓2(𝛽)) and 𝑓1 ↾ 𝑑𝑝(𝑓) + 1 is strictly increasing.

Notice that since for all 𝑓 ∈ 𝐼, 𝑓(0) ∈ {0} × ℐ0, so 𝑓(0) ̸= (0, 𝜏) and the depth
of 𝑓 is well defined. Also, 𝑓1(𝛽) = 0 if and only if either 𝛽 = 0, or 𝛽 > 𝑑𝑝(𝑓)
and 𝑓2(𝛽) = 𝜏 . For all 𝑓 ∈ 𝐼 with depth 𝛼, define 𝑜(𝑓) = 𝑓1(𝛼) the complexity of
𝑓 . Notice that for all 𝑓 ∈ 𝐼, 𝑓1(𝑑𝑝(𝑓) + 1) = 0, and 𝑓1(𝑑𝑝(𝑓)) = 0 if and only if
𝑑𝑝(𝑓) = 0. We say that 𝑓 < 𝑔 if and only if one of the following holds:

∙ 𝑓(0) ̸= 𝑔(0) and 𝑓2(0) < 𝑔2(0).
∙ Let 𝛼 = 𝑑𝑝(𝑔), ∀𝛽 ≤ 𝛼, 𝑓(𝛽) = 𝑔(𝛽) and 𝑓1(𝛼+ 1) ̸= 0.
∙ Exists 𝛼 > 0 such that ∀𝛽 < 𝛼, 𝑓(𝛽) = 𝑔(𝛽), and 𝑓1(𝛼), 𝑔1(𝛼) ̸= 0 and
𝑔(𝛼) > 𝑓(𝛼).

Notice that the set

𝐼0 = {𝑓 ∈ 𝐼 | 𝑓 : 𝜀→ ({0} × ℐ0) ∪ (0 × {𝜏})}
with the induced order is isomorphic to ℐ0.

For every 𝑖 ≤ 𝜅 let us define the order 𝐼𝑖 by induction. Suppose 𝑖 is such that
𝐼𝑖 is defined. Let

𝐼𝑖+1 = {𝑓 ∈ 𝐼 | 𝑜(𝑓) ≤ 𝑖+ 1}.
Suppose 𝑖 is a limit ordinal such that for all 𝑗 < 𝑖, 𝐼𝑗 is defined, let

𝐼𝑖 =
⋃︁
𝑗<𝑖

𝐼𝑗 .

Let us proceed to define the 𝜅-representations ⟨𝐼𝑖𝛼 | 𝛼 < 𝜅⟩ fort every 𝑖 < 𝜅. Define
⟨ℐ0

𝛼 | 𝛼 < 𝜅⟩ by

ℐ0
𝛼 = {𝜈 ∈ ℐ0 | 𝜈1(𝑛) < 𝛼 for all 𝑛 < 𝜀}

it is clear that ⟨ℐ0
𝛼 | 𝛼 < 𝜅⟩ is a 𝜅-representation. Let us define ⟨𝐼0𝛼 | 𝛼 < 𝜅⟩ in the

canonical way following the definition of 𝐼0.
Suppose 𝑖 < 𝜅 is such that ⟨𝐼𝑖𝛼 | 𝛼 < 𝜅⟩ has been defined. For all 𝛼 < 𝜅 let

𝐼𝑖+1
𝛼 = {𝑓 ∈ 𝐼 | 𝑜(𝑓) ≤ 𝑖+ 1 & 𝑓(0) ∈ 𝐼0𝛼},

notice that 𝑓(0) ∈ 𝐼0𝛼 holds if and only if 𝑓2(0) ∈ ℐ0
𝛼. If 𝑖 < 𝜅 is a limit ordinal,

then
𝐼𝑖𝛼 = ∪𝑗<𝑖𝐼

𝑗
𝛼.

Notice that 𝐼 =
⋃︀

𝑗<𝜅 𝐼
𝑖. Let us check that if for all 𝛽 < 𝜅, 𝛽<𝜀 < 𝜅, then ⟨𝐼𝑖𝛼 |

𝛼 < 𝜅⟩ is a 𝜅-representation. Notice that since ⟨𝐼0𝛼 | 𝛼 < 𝜅⟩ is a 𝜅-representation,
for all 𝛽 < 𝛼, 𝐼0𝛽 ⊆ 𝐼0𝛼. Therefore, for all 𝑖 < 𝜅 and 𝛽 < 𝛼 < 𝜅, 𝐼𝑖𝛽 ⊆ 𝐼𝑖𝛼. On the

other hand for all 𝑓 ∈ 𝐼, 𝑜(𝑓) = 𝑓1(𝛼), for 𝛼 = 𝑑𝑝(𝑓). Since 𝑓1 ↾𝑑𝑝(𝑓) + 1 is strictly
increasing,

|𝐼𝑜(𝑓)𝛽 | ≤ |𝑜(𝑓)<𝜀 × 𝐼0𝛽 | < 𝜅
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Let us define the 𝜅-representation ⟨𝐼𝛼 | 𝛼 < 𝜅⟩ by

𝐼𝛼 = 𝐼𝛼𝛼 .

Now we can state the main result of this section.

Theorem 2.11. Suppose 𝜅 is inaccessible, or 𝜅 = 𝜆+, 2𝜃 ≤ 𝜆 = 𝜆<𝜀. Then 𝐼 is
𝜀-dense, (< 𝜅)-stable, (𝜅, 𝜀)-nice, and 𝜅-colorable.

The proof of the previous theorem is divided in four lemmas, one per prop-
erty. Before we prove these lemmas, we need to define more notions related to 𝐼.
Generators and roads were notions that arose naturally in [37] from the inductive
construction. To use these notions to study 𝐼, we will need to define them in a
non-inductive way.

Definition 2.12 (Generators). For all 𝑓 ∈ 𝐼 with depth 𝛼, define the generator of
𝑓 , 𝐺𝑒𝑛(𝑓), by

𝐺𝑒𝑛(𝑓) = {𝑔 ∈ 𝐼 | 𝑓 ↾ 𝛼+ 1 = 𝑔 ↾ 𝛼+ 1}.

Fact 2.13. Let 𝑓, 𝑔 ∈ 𝐼 be such that 𝑓 ̸= 𝑔 and 𝑔 ∈ 𝐺𝑒𝑛(𝑓), then 𝑓 > 𝑔.

Proof. Let 𝑓, 𝑔 ∈ 𝐼 be such that 𝑓 ̸= 𝑔 and 𝑔 ∈ 𝐺𝑒𝑛(𝑓). So 𝑓 ↾ 𝛼 + 1 = 𝑔 ↾ 𝛼 + 1,
where 𝑑𝑝(𝑓) = 𝛼. Therefore 𝑓(𝛼 + 1) = (0, 𝜏) and 𝑔(𝛼 + 1) ̸= (0, 𝜏). We conclude
that 𝑓 > 𝑔. □

Fact 2.14. Let 𝑖, 𝛿 and 𝜈 be such that 𝜈 ∈ 𝐼𝑖𝛿. For all 𝑓 ∈ 𝐺𝑒𝑛(𝜈), 𝑓 ∈ 𝐼
𝑜(𝑓)
𝛿 .

Proof. It follows from the construction of ⟨𝐼𝑖𝛼 | 𝛼 < 𝜅⟩. □

Fact 2.15. Let 𝑓, 𝜈 ∈ 𝐼 be such that 𝑓 ∈ 𝐺𝑒𝑛(𝜈). If 𝑔 /∈ 𝐺𝑒𝑛(𝜈), then 𝑔 < 𝜈 if and
only if 𝑔 < 𝑓 .

Proof. Let 𝑔, 𝑓, 𝜈 ∈ 𝐼 be such that 𝑓 ∈ 𝐺𝑒𝑛(𝜈) and 𝑔 /∈ 𝐺𝑒𝑛(𝜈). Since 𝜈 ∈ 𝐺𝑒𝑛(𝜈),
𝑔 ̸= 𝜈.

(⇒) Let us assume that 𝑔 < 𝜈. By Fact 2.13 𝜈 /∈ 𝐺𝑒𝑛(𝑔). If 𝑔2(0) < 𝜈2(0), then
since 𝜈2(0) = 𝑓2(0), 𝑔2(0) < 𝑓2(0).

Let us suppose that 𝑔2(0) = 𝜈2(0). There is 𝛽 < 𝑑𝑝(𝜈) and 𝜈′ ∈ 𝐼 such that
𝑑𝑝(𝜈′) = 𝛽, 𝑔, 𝜈 ∈ 𝐺𝑒𝑛(𝜈′), and 𝑔(𝛽 + 1) ̸= 𝜈(𝛽 + 1). Since 𝑔 < 𝜈, 𝑔(𝛽) < 𝜈(𝛽) =
𝑓(𝛽). We conclude that 𝑔 < 𝑓 .

(⇐) Let us suppose 𝑔 > 𝜈. Since 𝑓 ∈ 𝐺𝑒𝑛(𝜈), 𝑔 > 𝜈 > 𝑓 . □

Corollary 2.16. For all 𝜈, 𝑓 ∈ 𝐼 such that 𝑓 ∈ 𝐺𝑒𝑛(𝜈)

𝑓 |= 𝑡𝑝𝑏𝑠(𝜈, 𝐼∖𝐺𝑒𝑛(𝜈), 𝐼) ∪ {𝜈 > 𝑥}.

Corollary 2.17. For all 𝜈, 𝑓 ∈ 𝐼 such that 𝑓 ∈ 𝐺𝑒𝑛(𝜈). If 𝜎 ∈ 𝐼 is such that
𝜈 ≥ 𝜎 ≥ 𝑓 , then 𝜎 ∈ 𝐺𝑒𝑛(𝜈).

Definition 2.18 (Roads). For all 𝜈 ∈ 𝐼 with 𝑑𝑝(𝜈) = 𝛼, there is a maximal
sequence ⟨𝜈𝑖 | 𝑖 ≤ 𝛼⟩ such that 𝜈0 ∈ 𝐼0, 𝜈𝛼 = 𝜈, and for all 𝑖 < 𝑗, 𝜈𝑖 ∈ 𝐺𝑒𝑛(𝜈𝑖).

We call this sequence the road from 𝐼0 to 𝜈.

For any 𝜈 ∈ 𝐼 with 𝑑𝑝(𝜈) = 𝛼 and the road ⟨𝜈𝑖 | 𝑖 ≤ 𝛼⟩ from 𝐼0, and 𝛽 ≤ 𝛼, we
call the sub-sequence ⟨𝜈𝑖 | 𝛽 ≤ 𝑖 ≤ 𝛼⟩, the road from 𝜈𝛽 to 𝜈.

Fact 2.19. Let ⟨𝜈𝑗 | 𝑗 ≤ 𝛼⟩ be the road from 𝐼0 to 𝜈𝛼. For all 𝑖 < 𝛼

𝜈𝛼 |= 𝑡𝑝𝑏𝑠(𝜈𝑖, 𝐼
𝑜(𝜈𝑖+1)∖(𝐺𝑒𝑛(𝜈𝑖+1) ∪ {𝜈𝑖}), 𝐼) ∪ {𝜈𝑖 > 𝑥}
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Proof. Let ⟨𝜈𝑗 | 𝑗 ≤ 𝛼⟩ be the road from 𝐼0 to 𝜈𝛼 and 𝑖 < 𝛼. By Corollary 2.16, we
know that

𝜈𝛼 |= 𝑡𝑝𝑏𝑠(𝜈𝑖, 𝐼∖𝐺𝑒𝑛(𝜈𝑖), 𝐼) ∪ {𝜈𝑖 > 𝑥}.
It is enough to show that

𝜈𝛼 |= 𝑡𝑝𝑏𝑠(𝜈𝑖, (𝐼
𝑜(𝜈𝑖+1)∖𝐺𝑒𝑛(𝜈𝑖+1)) ∩𝐺𝑒𝑛(𝜈𝑖), 𝐼).

Let 𝜎 ∈ (𝐼𝑜(𝜈𝑖+1)∖𝐺𝑒𝑛(𝜈𝑖+1)) ∩𝐺𝑒𝑛(𝜈𝑖). Since 𝜎 ∈ 𝐺𝑒𝑛(𝜈𝑖),

𝜈𝑖 ↾ 𝑑𝑝(𝜈𝑖) + 1 = 𝜎 ↾ 𝑑𝑝(𝜈𝑖) + 1

and 𝜈𝑖 > 𝜎. On the other hand 𝜎 ∈ 𝐼𝑜(𝜈𝑖+1), so 𝑜(𝜎) ≤ 𝑜(𝜈𝑖+1). Thus

0 < 𝜎1(𝑑𝑝(𝜈𝑖) + 1) ≤ 𝑜(𝜎) ≤ 𝑜(𝜈𝑖+1),

and since 𝜎 /∈ 𝐺𝑒𝑛(𝜈𝑖+1),

0 < 𝜎1(𝑑𝑝(𝜈𝑖) + 1) < 𝑜(𝜈𝑖+1).

By the definition of the complexity,

𝑜(𝜈𝑖+1) = (𝜈𝑖+1)1(𝑑𝑝(𝜈𝑖) + 1).

We conclude that 𝜈𝑖+1 > 𝜎. Finally, by Corollary 2.16,

𝜈𝛼 |= 𝑡𝑝𝑏𝑠(𝜈𝑖+1, 𝐼∖𝐺𝑒𝑛(𝜈𝑖+1), 𝐼).

We conclude that 𝜈𝛼 > 𝜎, as we wanted. □

2.2. 𝜀-dense. Recall that 𝒬 is 𝜀-dense, we will show that the orders 𝜅×𝒬, 𝐼0, and
𝐼 are also 𝜀-dense.

Lemma 2.20. 𝜅×𝒬 is 𝜀-dense.

Proof. Let ⟨𝑎𝑖 | 𝑖 < 𝜃1⟩ and ⟨𝑏𝑖 | 𝑖 < 𝜃2⟩ be sequences of 𝜅 × 𝒬 of length smaller
than 𝜀 such that for all 𝑖 < ℎ < 𝜃1 and 𝑗 < 𝑙 < 𝜃2, 𝑎𝑖 < 𝑎ℎ, 𝑏𝑙 < 𝑏𝑗 , and 𝑎𝑖 < 𝑏𝑗 .
For all 𝑖 < 𝜃1 and 𝑗 < 𝜃2, let us denote 𝑎𝑖 = (𝑎1𝑖 , 𝑎

2
𝑖 ) and 𝑏𝑗 = (𝑏1𝑗 , 𝑏

2
𝑗 )

Let us start by the case when the sequence ⟨𝑏𝑖 | 𝑖 < 𝜃2⟩ is empty. Since 𝜃1 <
𝜀 < 𝜅, there is 𝛼 < 𝜅 such that for all 𝑖 < 𝜃1, 𝑎1𝑖 < 𝛼. Let us fix 𝜏 ′ ∈ 𝒬, and define
𝑎 = (𝛼, 𝜏 ′). Therefore for all 𝑖 < 𝜃1, 𝑎𝑖 < 𝑎.

Let us show the case when the sequence ⟨𝑏𝑖 | 𝑖 < 𝜃2⟩ is non-empty. Let 𝑎1 =⋂︀
𝑗<𝜃2

𝑏1𝑗 . Let us show that for all 𝑖 < 𝜃1, 𝑎1𝑖 ≤ 𝑎1. Let us suppose, towards

contradiction, that there is 𝑖 < 𝜃1 such that 𝑎1𝑖 > 𝑎1. Since there are no infinite
descending sequences of ordinals, there is 𝑗 < 𝜃2 such that 𝑏1𝑗 = 𝑎1. Therefore

𝑎1𝑖 > 𝑏1𝑗 , a contradiction.

Let us show that there is 𝑎2 such that for all 𝑖 < 𝜃1 and 𝑗 < 𝜃2, 𝑎𝑖 < (𝑎1, 𝑎2) < 𝑏𝑗 .
Let us define 𝐴 = {𝑎2𝑖 | 𝑗 < 𝜃1 & 𝑎1 = 𝑎1𝑖 } and 𝐵 = {𝑏2𝑗 | 𝑗 < 𝜃1 & 𝑎1 = 𝑏1𝑗}. Notice
that 𝐴 is not necessarily a non-empty set.

Let us show the case 𝐴 ̸= ∅, the other case is similar. Since 𝐴,𝐵 ⊆ 𝒬 and
|𝐴|, |𝐵| < 𝜀, there is 𝑎2 such that for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵, 𝑥 < 𝑎2 < 𝑦. Let 𝑖 < 𝜃1
and 𝑗 < 𝜃2. If 𝑎1𝑖 < 𝑎1, then 𝑎𝑖 < (𝑎1, 𝑎2). Also, if 𝑎1 < 𝑏1𝑗 , then (𝑎1, 𝑎2) < 𝑏𝑗 .

Finally, if 𝑎1𝑖 = 𝑎1, then by the way 𝑎2 was defined, 𝑎𝑖 < (𝑎1, 𝑎2). In the same way,
if 𝑏1𝑗 = 𝑎1, then by the way 𝑎2 was defined, (𝑎1, 𝑎2) < 𝑏𝑗 .

□

Lemma 2.21. ℐ0 is 𝜀-dense.

Proof. Let ⟨𝑓 𝑖 | 𝑖 < 𝜃1⟩ and ⟨𝑔𝑖 | 𝑖 < 𝜃2⟩ be sequences of ℐ0 of length smaller than
𝜀 such that for all 𝑖 < ℎ < 𝜃1 and 𝑗 < 𝑙 < 𝜃2, 𝑓 𝑖 < 𝑓ℎ, 𝑔𝑙 < 𝑔𝑗 , and 𝑓 𝑖 < 𝑔𝑗 . Let
us start by constructing a sequence ⟨𝑎𝛼 | 𝛼 < 𝜀⟩ by induction. By the way ℐ0 was
constructed, we know that ⟨𝑓 𝑖(0) | 𝑖 < 𝜃1⟩ is a non-decreasing sequence of 𝜅 × 𝒬
and ⟨𝑔𝑖(0) | 𝑖 < 𝜃2⟩ is a non-increasing sequence of 𝜅 ×𝒬, such that for all 𝑖 < 𝜃1
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and 𝑗 < 𝜃2, 𝑓 𝑖(0) ≤ 𝑔𝑗(0). By Lemma 2.20, there is 𝑎0 ∈ 𝜅 × 𝒬, such that for all
𝑖 < 𝜃1 and 𝑗 < 𝜃2, 𝑓 𝑖(0) ≤ 𝑎0 ≤ 𝑔𝑗(0).

Let 𝛼 < 𝜀 be such that for all 𝛽 < 𝛼 is such that 𝑎𝛽 has been defined. Let

𝑋𝑓
𝛼 = {𝑓 𝑖(𝛼) | 𝑖 < 𝜃1 & ∀𝛽 < 𝛼 𝑓 𝑖(𝛽) = 𝑎𝛽}

and

𝑋𝑔
𝛼 = {𝑔𝑖(𝛼) | 𝑖 < 𝜃2 & ∀𝛽 < 𝛼 𝑔𝑖(𝛽) = 𝑎𝛽}.

By the induction hypothesis, if 𝑋𝑓
𝛼, 𝑋

𝑔
𝛼 ̸= ∅, then for all 𝑦 ∈ 𝑋𝑓

𝛼 and 𝑧 ∈ 𝑋𝑔
𝛼, 𝑦 ≤ 𝑧.

Therefore, by Lemma 2.20, if 𝑋𝑓
𝛼 ̸= ∅ or 𝑋𝑔

𝛼 ̸= ∅, then there is 𝑎 ∈ 𝜅×𝒬, such
that for all 𝑦 ∈ 𝑋𝑓

𝛼 and 𝑧 ∈ 𝑋𝑔
𝛼, 𝑦 ≤ 𝑎 ≤ 𝑧. If 𝑋𝑓

𝛼 ̸= ∅ or 𝑋𝑔
𝛼 ̸= ∅ we choose

𝑎𝛼 ∈ 𝜅×𝒬, such that for all 𝑦 ∈ 𝑋𝑓
𝛼 and 𝑧 ∈ 𝑋𝑔

𝛼, 𝑦 ≤ 𝑎𝛼 ≤ 𝑧.
Let us fix 𝜏 ′ ∈ 𝒬. If 𝛼 < 𝜀 is such that 𝑋𝑓

𝛼 = 𝑋𝑔
𝛼 = ∅, then we choose

𝑎𝛼 = (0, 𝜏 ′).
Let 𝐹 : 𝜀→ 𝜅×𝒬 be defined by 𝐹 (𝛼) = 𝑎𝛼.

Claim 2.21.1. 𝐹 ∈ ℐ0.

Proof. Since 𝜃1, 𝜃2 < 𝜀, and for all 𝑓 ∈ {𝑓 𝑖 | 𝑖 < 𝜃1} ∪ {𝑔𝑖 | 𝑖 < 𝜃2}, |{𝛼 ∈ 𝜀 |
𝑓1(𝛼) ̸= 0}| is smaller than 𝜀, |{𝛼 ∈ 𝜀 | 𝐹1(𝛼) ̸= 0}| is smaller than 𝜀. □

Claim 2.21.2. For all 𝑖 < 𝜃1, 𝑓
𝑖 < 𝐹 .

Proof. By the way 𝐹 was constructed, we know that for all 𝑖 < 𝜃1 and 𝑗 < 𝜃2,
𝑓 𝑖 ≤ 𝐹 ≤ 𝑔𝑗 . Let us assume, towards contradiction, that there is 𝑖 < 𝜃1 such that
𝑓 𝑖 ̸< 𝐹 . Since ℐ0 is a linear order, 𝑓 𝑖 = 𝐹 and for all ℎ ≥ 𝑖, 𝑓ℎ = 𝐹 . So 𝜃1 = 𝑖+ 1.

Notice that for all 𝛼 < 𝜅, 𝑓 𝑖(𝛼) ∈ 𝑋𝑓
𝛼. By Lemma 2.20, for all 𝛼 < 𝜀, 𝑓 𝑖(𝛼) = 𝑎𝛼

implies that there is 𝑗𝛼 < 𝜃2 such that for all 𝛽 ≤ 𝛼, 𝑔𝑗𝛼(𝛽) = 𝑎𝛽 . Thus, there is a
sequence {𝑔𝑗𝛼}𝛼<𝜀 such that for all 𝛼 < 𝜅 and 𝛽 ≤ 𝛼, 𝑔𝑗𝛼(𝛽) = 𝑎𝛽 .

Since 𝜃2 < 𝛾, there is 𝑗 < 𝜃2 such that for all 𝛼 < 𝜅, 𝑔𝑗(𝛼) = 𝑎𝛼. So 𝑔𝑗 = 𝐹 = 𝑓 𝑖,
this contradicts that 𝑓 𝑖 < 𝑔𝑗 . □

Using the same argument, we can show that for all 𝑗 < 𝜃2, 𝐹 < 𝑔𝑗 . □

Lemma 2.22. 𝐼 is 𝜀-dense.

Proof. Let ⟨𝑓 𝑖 | 𝑖 < 𝜃1⟩ and ⟨𝑔𝑖 | 𝑖 < 𝜃2⟩ sequences of 𝐼 of length smaller than 𝜀
such that for all 𝑖 < ℎ < 𝜃1 and 𝑗 < 𝑙 < 𝜃2, 𝑓 𝑖 < 𝑓ℎ, 𝑔𝑙 < 𝑔𝑗 , and 𝑓 𝑖 < 𝑔𝑗 . Let
us construct the sequence ⟨𝑎𝛼 | 𝛼 < 𝜀⟩ by induction. Since ℐ0 is 𝜀-dense, there is
𝑎−1 ∈ ℐ0 such that 𝑎0 = (0, 𝑎−1), and for all 𝑖 < 𝜃1 and 𝑗 < 𝜃2, 𝑓 𝑖(0) ≤ 𝑎0 ≤ 𝑔𝑗(0).
Let 0 < 𝛼 < 𝜀 be such that for all 𝛽 < 𝛼, 𝑎𝛽 has been defined. For all 𝛼 < 𝜅 define

𝑋𝑓
𝛼 = {𝑓 𝑖(𝛼) | 𝑖 < 𝜃1, ∀𝛽 < 𝛼 (𝑓 𝑖(𝛽) = 𝑎𝛽 & 𝑓 𝑖1(𝛼) ̸= 0)}

and

𝑋𝑔
𝛼 = {𝑔𝑖(𝛼) | 𝑖 < 𝜃2, ∀𝛽 < 𝛼 (𝑔𝑖(𝛽) = 𝑎𝛽 & 𝑔𝑖1(𝛼) ̸= 0)}.

By the induction hypothesis, if 𝑋𝑓
𝛼, 𝑋

𝑔
𝛼 ̸= ∅, then for all 𝑥 ∈ 𝑋𝑓

𝛼 and 𝑦 ∈ 𝑋𝑔
𝛼, 𝑥 ≤ 𝑦.

Therefore by Lemma 2.20, for all 𝛼 > 0 if 𝑋𝑓
𝛼 ̸= ∅ or 𝑋𝑔

𝛼 ̸= ∅, there is 𝑎 ∈ 𝜅 × 𝒬
such that for all 𝑥 ∈ 𝑋𝑓

𝛼 and 𝑦 ∈ 𝑋𝑔
𝛼, 𝑥 ≤ 𝑎 ≤ 𝑦.

If 𝑋𝑔
𝛼 ̸= ∅ we choose 𝑎𝛼 ∈ 𝜅×𝒬 as in Lemma 2.20, such that for all 𝑦 ∈ 𝑋𝑓

𝛼 and
𝑧 ∈ 𝑋𝑔

𝛼, 𝑦 ≤ 𝑎𝛼 ≤ 𝑧.

For all 𝛽 < 𝜅, let us denote 𝑎𝛽 = (𝑎𝛽1 , 𝑎
𝛽
2 ). If 𝑋𝑓

𝛼 ̸= ∅ and 𝑋𝑔
𝛼 = ∅, we choose

𝑎𝛼 = (𝑎𝛼1 , 𝑎
𝛼
2 ) by

∙ 𝑎𝛼1 =
⋃︀

({𝑎𝛽1 + 1 | 𝛽 < 𝛼} ∪ {𝑓 𝑖1(𝛼) | 𝑓 𝑖(𝛼) ∈ 𝑋𝑓
𝛼});

∙ 𝑎𝛼2 = 𝜏 .

If 𝛼 is such that 𝑋𝑓
𝛼 = 𝑋𝑔

𝛼 = ∅, then we choose 𝑎𝛼 as follows:
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∙ If for all 𝛽 < 𝛼, 𝑋𝑓
𝛽 ̸= ∅ or 𝑋𝑔

𝛽 ̸= ∅, then choose 𝑎𝛼 = (�̄�𝛼, 𝜏), where

�̄�𝛼 =
⋃︀
{𝑎𝛽1 + 1 | 𝛽 < 𝛼};

∙ if there is 𝛽 < 𝛼 such that 𝑎𝛽 = (0, 𝜏), then choose 𝑎𝛼 = (0, 𝜏).

Let us define 𝐹 : 𝜀→ ({0} × ℐ0) ∪ (𝜅×𝒬) by 𝐹 (𝛼) = 𝑎𝛼.

Claim 2.22.1. 𝐹 ∈ 𝐼

Proof. Since 𝜃1, 𝜃2 < 𝜀, there is 𝛼 < 𝜅 such that for all 𝛽 > 𝛼, 𝐹 (𝛽) = (0, 𝜏).

Notice that there is 𝛼 such that 𝑋𝑓
𝛼, 𝑋

𝑔
𝛼 = ∅ and for all 𝛽 < 𝛼, 𝑋𝑓

𝛽 ̸= ∅ or 𝑋𝑔
𝛽 ̸= ∅.

We are missing to show that 𝐹1 ↾ 𝛼 + 1 is strictly increasing. Let us suppose,
towards contradiction, there is 𝛽 < 𝛼 such that 𝐹1(𝛽) ≥ 𝐹1(𝛽 + 1). From the way
𝐹 was defined, 𝑋𝑔

𝛽+1 ̸= ∅. From the proof of Lemma 2.20, there are 𝑗, 𝑙 < 𝜃2 such

that 𝑔𝑗1(𝛽) = 𝐹1(𝛽) ≥ 𝐹1(𝛽 + 1) = 𝑔𝑙1(𝛽 + 1). By the way 𝐹 was constructed,
𝑔𝑙1(𝛽) ≥ 𝐹 (𝛽), thus 𝑔𝑙1(𝛽) ≥ 𝑔𝑙1(𝛽 + 1), a contradiction. □

Claim 2.22.2. For all 𝑖 < 𝜃1, 𝑓
𝑖 < 𝐹 .

Proof. Let us suppose, towards contradiction, that there is 𝑖 < 𝜃1 such that 𝑓 𝑖 ≥ 𝐹 .
Case 𝑓 𝑖 > 𝐹 . By the way 𝐹 was constructed this could only happens when

𝛼 = 𝑑𝑝(𝑓 𝑖), 𝑓 𝑖 ↾𝛼+ 1 = 𝐹 ↾𝛼+ 1 and 𝐹1(𝛼+ 1) ̸= 0. Notice that since ⟨𝑓 𝑖 | 𝑖 < 𝜃1⟩
is an increasing sequence, there is no 𝑗 < 𝜃1 such that 𝑓 𝑖 < 𝑓 𝑗 . Otherwise, since
𝛼 = 𝑑𝑝(𝑓 𝑖), there is 𝛽 ≤ 𝛼 such that 𝑓 𝑖 ↾ 𝛽 = 𝑓 𝑗 ↾ 𝛽 and 𝑎𝛽 = 𝑓 𝑖(𝛽) < 𝑓 𝑗(𝛽). A

contradiction with the way 𝑎𝛽 was chosen. Thus 𝜃1 = 𝑖+ 1 and 𝑋𝑓
𝛼+1 = ∅.

On the other hand 𝑋𝑔
𝛼+1 = ∅. Otherwise, there is 𝑗 < 𝜃2 such that 𝑔𝑗 ↾ 𝛼+ 1 =

𝐹 ↾ 𝛼+ 1 = 𝑓 𝑖 ↾ 𝛼+ 1 and 𝑔𝑗(𝛼+ 1) ̸= (0, 𝜏); so 𝑓 𝑖 > 𝑔𝑗 .
Finally, by the way 𝑎𝛼 was chosen, 𝑓 𝑖(𝛼) = 𝐹 (𝛼) implies that there is 𝑗 < 𝜃2

such that 𝑔𝑗 ↾𝛼+1 = 𝑓 𝑖 ↾𝛼+1. Since 𝑋𝑔
𝛼+1 = ∅, 𝑑𝑝(𝑔𝑗) = 𝛼 = 𝑑𝑝(𝑓 𝑖). We conclude

that 𝑓 𝑖 = 𝑔𝑗 a contradiction.
Case 𝑓 𝑖 = 𝐹 . Let 𝛼 = 𝑑𝑝(𝑓 𝑖). Notice that 𝑓 𝑖(𝛼) ∈ 𝑋𝑓

𝛼, by the way 𝑎𝛼+1 was
defined, 𝐹1(𝛼+ 1) = 𝑎𝛼+1

1 > 0. But 𝐹1(𝛼+ 1) = 𝑓 𝑖1(𝛼+ 1) = 0, a contradiction.
□

Claim 2.22.3. For all 𝑗 < 𝜃2, 𝐹 < 𝑔𝑗.

Proof. Let us suppose, towards contradiction, that there is 𝑗 < 𝜃2 such that 𝑔𝑗 ≥ 𝐹 .
Case 𝑔𝑗 < 𝐹 . Notice that 𝑑𝑝(𝑔𝑗) > 0, otherwise since 𝑔𝑗(0) ≥ 𝐹 (0), 𝑔𝑗(0) =

𝐹 (0) and 𝑔𝑗1(1) = 0 ̸= 𝐹 (1); so 𝑔𝑗 > 𝐹 a contradiction.
Therefore, there is 0 < 𝛼 < 𝜃2 such that 𝑔𝑗 ↾ 𝛼 = 𝐹 ↾ 𝛼, and 𝐹 (𝛼) = (0, 𝜏) and

𝑔𝑗(𝛼) ̸= (0, 𝜏). Therefore 𝑑𝑝(𝑔𝑗) ≥ 𝛼, 𝑔𝑗1(𝛼) > 0, and 𝑔𝑗(𝛼) ∈ 𝑋𝑔
𝛼. Thus 𝐹1(𝛼) > 0

a contradiction.
Case 𝑔𝑗 = 𝐹 . Let 𝛼 = 𝑑𝑝(𝑔𝑗). Then 𝑔𝑗(𝛼) ∈ 𝑋𝑔

𝛼, by the way 𝐹 was constructed,
𝐹 (𝛼+ 1) ̸= (0, 𝜏). Since 𝐹 = 𝑔𝑗 , 𝑔𝑗(𝛼+ 1) ̸= (0, 𝜏) and 𝑑𝑝(𝑔𝑗) > 𝛼 a contradiction.

□

□

2.3. (𝜅, 𝜀)-nice. To prove the (𝜅, 𝜀)-nice property, we will show that for all 𝑖 < 𝜅,
the order 𝐼𝑖 is (𝜅, 𝜀)-nice. This will follows from the properties of the generators.

Lemma 2.23. For all limit 𝛿 < 𝜅 and 𝜈 ∈ 𝐼0 there is 𝛽 < 𝛿 which satisfies the
following:

∀𝜎 ∈ 𝐼0𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈)].

In particular. If 𝜈 /∈ 𝐼0𝛿 , then 𝛽 satisfies:

∀𝜎 ∈ 𝐼0𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)].
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Proof. It is enough to show that ℐ0 satisfies the desire property. Suppose 𝛿 < 𝜅 is
a limit and 𝜈 ∈ ℐ0. If 𝜈 ∈ ℐ0

𝛿 , then there is 𝛽 < 𝛿 such that 𝜈 ∈ ℐ0
𝛽 and the result

follows.
Let us take care of the case 𝜈 /∈ ℐ0

𝛿 . Let 𝛽 < 𝛿 be the least ordinal such that for
all 𝛼 < 𝜀, 𝜈1(𝛼) < 𝛿 implies 𝜈1(𝛼) < 𝛽.

Claim 2.23.1. For all 𝜎 ∈ ℐ0
𝛿 . If 𝜎 > 𝜈, then there is 𝜎′ ∈ ℐ0

𝛽 such that 𝜎 ̸= 𝜎′

and 𝜎 > 𝜎′ > 𝜈.

Proof. Let us suppose 𝜎 ∈ ℐ0
𝛿 is such that 𝜎 > 𝜈. By the definition of ℐ0, there is

𝛼 < 𝜀 such that 𝜎(𝛼) > 𝜈(𝛼) and 𝛼 is the minimum ordinal such that 𝜎(𝛼) ̸= 𝜈(𝛼).
Since 𝜎 ∈ ℐ0

𝛿 , for all 𝜌 ≤ 𝛼, 𝜈1(𝜌) < 𝛿. Thus for all 𝜌 ≤ 𝛼, 𝜈1(𝜌) < 𝛽.
Let us divide the proof in two cases, 𝜎1(𝛼) = 𝜈1(𝛼) and 𝜎1(𝛼) > 𝜈1(𝛼).
Case 1. 𝜎1(𝛼) = 𝜈1(𝛼).
By the density of 𝒬 there is 𝑟 such that 𝜎2(𝛼) > 𝑟 > 𝜈2(𝛼). Let us define 𝜎′ by:

𝜎′(𝜌) =

⎧⎪⎨⎪⎩
𝜈(𝜌) if 𝜌 < 𝛼

(𝜈1(𝛼), 𝑟) if 𝜌 = 𝛼

0 otherwise.

Clearly 𝜎 > 𝜎′ > 𝜈. Since 𝜈1(𝜌) < 𝛽 for all 𝜌 ≤ 𝛼, 𝜎′ ∈ ℐ0
𝛽 .

Case 2. 𝜎1(𝛼) > 𝜈1(𝛼).
Since 𝒬 is a model of DLO, there is 𝑟 such that 𝑟 > 𝜈2(𝛼). Let us define 𝜎′ by:

𝜎′(𝜌) =

⎧⎪⎨⎪⎩
𝜈(𝜌) if 𝜌 < 𝛼

(𝜈1(𝛼), 𝑟) if 𝜌 = 𝛼

0 otherwise.

Clearly 𝜎 > 𝜎′ > 𝜈. Since 𝜈1(𝜌) < 𝛽 for all 𝜌 ≤ 𝛼, 𝜎′ ∈ ℐ0
𝛽 . □

□

Lemma 2.24. For all 𝑖 < 𝜅, 𝛿 < 𝜅 a limit ordinal, and 𝜈 ∈ 𝐼𝑖, there is 𝛽 < 𝛿 that
satisfies the following:

(1) ∀𝜎 ∈ 𝐼𝑖𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼𝑖𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈)].

In particular. If 𝜈 /∈ 𝐼𝑖𝛿, then 𝛽 satisfies:

∀𝜎 ∈ 𝐼𝑖𝛿[𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)]

Proof. Notice that if 𝜈 ∈ 𝐼𝑖𝛿, then there is 𝛼 < 𝛿 such that 𝜈 ∈ 𝐼𝑖𝛼 and the result
follows for 𝛽 = 𝛼. We only have to prove the lemma when 𝜈 ∈ 𝐼𝑖∖𝐼𝑖𝛿:

For all 𝑖 < 𝜅, 𝛿 < 𝜅 a limit ordinal, and 𝜈 ∈ 𝐼𝑖∖𝐼𝑖𝛿, there is 𝛽 < 𝛿 that satisfies
the following:

(2) ∀𝜎 ∈ 𝐼𝑖𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)]

Let 𝜈 ∈ 𝐼𝑖 be such that 𝜈 ∈ 𝐼𝑖∖𝐼𝑖𝛿. Let 𝜈′ ∈ 𝐼0 be such that 𝜈 ∈ 𝐺𝑒𝑛(𝜈′), so by
Fact 2.14, 𝜈′ /∈ 𝐼𝑖𝛿. By Lemma 2.23, there is 𝛽 < 𝛿 such that

∀𝜎 ∈ 𝐼0𝛿 [𝜎 > 𝜈′ ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈′)].

Claim 2.24.1. 𝛽 is as wanted.

Proof. Let 𝜎 ∈ 𝐼𝑖𝛿 such that 𝜎 > 𝜈. Since 𝜈′ /∈ 𝐼𝑖𝛿, by Corollary 2.16, 𝜎 > 𝜈′.
Since 𝜎 ∈ 𝐼𝑖𝛿, there is 𝜎′ ∈ 𝐼0𝛿 such that 𝜎 ∈ 𝐺𝑒𝑛(𝜎′). By the way 𝛽 was chosen,
there is 𝜎′′ ∈ 𝐼0𝛽 such that 𝜎′ > 𝜎′′ > 𝜈′. It is clear that 𝜎′′ /∈ 𝐺𝑒𝑛(𝜈′) ∪ 𝐺𝑒𝑛(𝜎′).

We conclude from Corollary 2.16 that 𝜎 > 𝜎′′ > 𝜈. Since 𝜎′′ ∈ 𝐼0𝛽 ⊆ 𝐼𝑖𝛽 , 𝜎′′ is as
wanted. □
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□

As it can be seen in the proof of the previous lemma, the witness 𝜎′′ can be
chosen in 𝐼0𝛽 when 𝜈 /∈ 𝐼𝑖𝛿.

Lemma 2.25. For all 𝛿 < 𝜅 limit with 𝑐𝑓(𝛿) ≥ 𝜀, and 𝜈 ∈ 𝐼, there is 𝛽 < 𝛿 that
satisfies the following:

(3) ∀𝜎 ∈ 𝐼𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼𝛽 (𝜎 ≥ 𝜎′ ≥ 𝜈)]

Proof. Let 𝛿 < 𝜅 be a limit ordinal with 𝑐𝑓(𝛿) ≥ 𝜀, and 𝜈 ∈ 𝐼. We have three

different cases: 𝜈 ∈ 𝐼𝛿, 𝜈 ∈ 𝐼
𝑜(𝜈)
𝛿 ∖𝐼𝛿, and 𝜈 /∈ 𝐼

𝑜(𝜈)
𝛿 .

Case 𝜈 ∈ 𝐼𝛿. Since 𝛿 is a limit, 𝑜(𝜈) < 𝛿 and there is 𝜌 < 𝛿 such that 𝜈 ∈ 𝐼
𝑜(𝜈)
𝜌 .

Let 𝛽 = 𝑚𝑎𝑥{𝑜(𝜈), 𝜌}, it is clear that 𝛽 is as wanted.

Case 𝜈 ∈ 𝐼
𝑜(𝜈)
𝛿 ∖𝐼𝛿. Notice that 𝑜(𝜈) > 𝛿. Let 𝜈0 ∈ 𝐼0 be such that 𝜈 ∈ 𝐺𝑒𝑛(𝜈0).

Let {𝜈𝑖}𝑖≤𝛼 be the road from 𝐼0 to 𝜈, so 𝜈 = 𝜈𝛼 and 𝛼 is the depth of 𝜈. The
sequence ⟨𝑜(𝜈𝑖) | 𝑖 ≤ 𝛼⟩ is an strictly increasing sequence with 𝑜(𝜈0) = 0 and
𝑜(𝜈𝛼) > 𝛿. Therefore, there is 𝑗 ≤ 𝛼 such that ∀𝑖 < 𝑗, 𝑜(𝜈𝑖) < 𝛿 and 𝑜(𝜈𝑗) ≥ 𝛿.

Claim 2.25.1. There is 𝜌 < 𝛿 such that for all 𝑖 < 𝑗, 𝑜(𝜈𝑖) < 𝜌.

Proof. Let us suppose, towards contradiction, that such 𝜌 doesn’t exists. Since
∀𝑖 < 𝑗, 𝑜(𝜈𝑖) < 𝛿 and 𝑜(𝜈𝑗) ≥ 𝛿, ⟨𝑜(𝜈𝑖) | 𝑖 < 𝑗⟩ is cofinal to 𝛿. On the other hand
𝑗 < 𝜀, we conclude that 𝑐𝑓(𝛿) < 𝜀 a contradiction. □

Recall that 𝜈 ∈ 𝐼
𝑜(𝜈)
𝛿 , by Fact 2.14, for all 𝑗 < 𝛼, 𝜈𝑖 ∈ 𝐼

𝑜(𝜈𝑖)
𝛿 . Let 𝜃1 be as in

the previous claim. Notice that for all 𝑖 ≤ 𝛼, 𝜈𝑖 /∈ 𝐼𝜃1𝛿 implies 𝜈𝑖 /∈ 𝐼𝛿𝛿 . Since 𝛿 is

a limit ordinal, there is 𝜃2 such that 𝜈0 ∈ 𝐼0𝜃2 . Thus, for all 𝑖 ≤ 𝛼, 𝜈𝑖 ∈ 𝐼
𝑜(𝜈𝑖)
𝜃2

. Let

𝛽 = 𝑚𝑎𝑥{𝜃1, 𝜃2}.

Claim 2.25.2. 𝛽 is as wanted.

Proof. Let 𝜎 ∈ 𝐼𝛿𝛿 be such that 𝜎 > 𝜈. If 𝜎 ∈ 𝐺𝑒𝑛(𝜈0), then 𝜎 ∈ 𝐼𝛽𝛽 and we are

done. Otherwise, 𝜎 /∈ 𝐺𝑒𝑛(𝜈0). By Corollary 2.16, 𝜎 > 𝜈0 > 𝜈. So 𝜈0 = 𝜎′ is as we
wanted. □

Case 𝜈 /∈ 𝐼
𝑜(𝜈)
𝛿 . Let 𝜌 = 𝑚𝑎𝑥{𝑜(𝜈), 𝛿}, thus 𝜈 ∈ 𝐼𝜌 and by Lemma 2.24 there is

𝛽 < 𝛿 which satisfies the following:

∀𝜎 ∈ 𝐼𝜌𝛿 [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐼0𝛽 (𝜎 > 𝜎′ > 𝜈)].

Claim 2.25.3. 𝛽 is as wanted.

Proof. Let 𝜎 ∈ 𝐼𝛿𝛿 be such that 𝜎 > 𝜈. Since 𝛿 ≤ 𝜌, 𝜎 ∈ 𝐼𝜌𝛿 . Therefore, there is

𝜎′ ∈ 𝐼0𝛽 such that 𝜎 > 𝜎′ > 𝜈. The claim follows from 𝐼0𝛽 ⊆ 𝐼𝛽𝛽 = 𝐼𝛽 . □

□

Corollary 2.26. 𝐼 is (𝜅, 𝜀)-nice.

2.4. (< 𝜅)-stable. Notice that if 𝜅 is inaccessible, 𝐼 is (< 𝜅)-stable. This can be
generalize to 𝜅 successors. Recall that |𝒬| = 𝜃 < 𝜅 and 𝜃 ≥ 𝜀.

Lemma 2.27. Suppose 𝜅 = 𝜆+ and 2𝜃 ≤ 𝜆 = 𝜆<𝜀. ℐ0 is (< 𝜅)-stable.

Proof. Let ℐ−1 be the set of functions 𝑓 : 𝜀→ 𝜅 such that |{𝛼 ∈ 𝜀 | 𝑓(𝛼) ̸= 0}| < 𝜀.
We say that 𝑓 < 𝑔 if 𝑓(𝛼) < 𝑔(𝛼), where 𝛼 is the least ordinal such that 𝑓(𝛼) ̸= 𝑔(𝛼).

Claim 2.27.1. ℐ−1 is (< 𝜅)-stable.
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Proof. Let 𝐴 ⊆ ℐ−1 be such that |𝐴| < 𝜅, and let

𝛽 = 𝑠𝑢𝑝{𝑓(𝛼) + 1 | 𝑓 ∈ 𝐴 & 𝛼 < 𝜀}

so 𝛽 < 𝜅. Therefore, for all 𝑓 ∈ ℐ−1, 𝑡𝑝𝑏𝑠(𝑓,𝐴, ℐ−1) is entirely determined by
the coordinates of 𝑓 which are smaller than 𝛽 + 1. Since 𝜆 = 𝜆<𝜀 and 𝛽 < 𝜅,
|{𝑡𝑝𝑏𝑠(𝑓,𝐴, ℐ−1) | 𝑓 ∈ ℐ−1}| < 𝜅. □

For all 𝐴 ⊆ ℐ0 define 𝑃𝑟(𝐴) as the set {𝑓1 | 𝑓 ∈ 𝐴}. Let 𝐴 ⊆ 𝐼0 be such that
|𝐴| < 𝜅. Since |𝒬| = 𝜃,

|{𝑡𝑝𝑏𝑠(𝑎,𝐴, ℐ0) | 𝑎 ∈ ℐ0}| ≤ |{𝑡𝑝𝑏𝑠(𝑎, 𝑃𝑟(𝐴), ℐ−1) | 𝑎 ∈ ℐ−1} × 2𝜃|.

By the previous claim and since 2𝜃 ≤ 𝜆, |{𝑡𝑝𝑏𝑠(𝑎,𝐴, ℐ0) | 𝑎 ∈ ℐ0}| < 𝜅. □

This Lemma implies that under the assumptions 𝜅 = 𝜆+ and 2𝜃 ≤ 𝜆 = 𝜆<𝜀, 𝐼0

is (< 𝜅)-stable.

Lemma 2.28. Suppose 𝜅 = 𝜆+ and 2𝜃 ≤ 𝜆 = 𝜆<𝜀. For all 𝜈 ∈ 𝐼0, 𝐺𝑒𝑛(𝜈) with
the induced order is (< 𝜅)-stable.

Proof. Let 𝜈 ∈ 𝐼0 and 𝐴 ⊆ 𝐺𝑒𝑛(𝜈) be such that |𝐴| < 𝜅, and let

𝛽 = 𝑠𝑢𝑝{𝑓1(𝛼) + 1 | 𝑓 ∈ 𝐴 & 𝛼 < 𝜀}.

Since 𝑓1(𝛼) = 0 for all 𝛼 > 𝑑𝑝(𝑓), 𝛽 < 𝜅. On the other hand, for all 𝑓, 𝑔 ∈ 𝐺𝑒𝑛(𝜈),
𝑓 and 𝑔 eventually become constants to (0, 𝜏), and the order 𝑓 < 𝑔 (or 𝑔 < 𝑓)
is determined by the values of 𝑓(𝛼) and 𝑔(𝛼), where 𝛼 is the least ordinal such
that𝑓(𝛼) ̸= 𝑔(𝛼). Therefore, for all 𝑓 ∈ 𝐺𝑒𝑛(𝜈), 𝑡𝑝𝑏𝑠(𝑓,𝐴,𝐺𝑒𝑛(𝜈)) is entirely
determined by the coordinates 𝛼 of 𝑓 in which 𝑓1(𝛼) is smaller than 𝛽 + 1. Since
𝜆<𝜀 = 𝜆, 𝛽 < 𝜅, and 2𝜃 ≤ 𝜆

|{𝑡𝑝𝑏𝑠(𝑓,𝐴,𝐺𝑒𝑛(𝜈)) | 𝑓 ∈ 𝐺𝑒𝑛(𝜈)}| ≤ |𝛽<𝜀 × 2𝜃| ≤ 𝜆 < 𝜅.

□

Lemma 2.29. Suppose 𝜅 = 𝜆+ and 2𝜃 ≤ 𝜆 = 𝜆<𝜀. 𝐼 is (< 𝜅)-stable.

Proof. Let us fix 𝐴 ⊂ 𝐼 such that |𝐴| < 𝜅. From Corollary 2.16, for all 𝑎 ∈ 𝐼 and
𝜈 ∈ 𝐼0 such that 𝑎 ∈ 𝐺𝑒𝑛(𝜈) the following holds:

𝑏 |= 𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) ⇔ 𝑏 |= 𝑡𝑝𝑏𝑠(𝜈,𝐴∖𝐺𝑒𝑛(𝜈), 𝐼) ∪ 𝑡𝑝𝑏𝑠(𝑎,𝐴 ∩𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)).

Thus for all 𝑎 ∈ 𝐼 and 𝜈 ∈ 𝐼0 with 𝑎 ∈ 𝐺𝑒𝑛(𝜈), the type of 𝑎 is determined by
𝑡𝑝𝑏𝑠(𝜈,𝐴∖𝐺𝑒𝑛(𝜈), 𝐼) and 𝑡𝑝𝑏𝑠(𝑎,𝐴∩𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)). Let 𝐴′ ⊆ 𝐼0 be such that the
following hold:

∙ for all 𝑥 ∈ 𝐴 there is 𝑦 ∈ 𝐴′, 𝑥 ∈ 𝐺𝑒𝑛(𝑦);
∙ for all 𝑦 ∈ 𝐴′ there is 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐺𝑒𝑛(𝑦).

Clearly |𝐴′| ≤ |𝐴|, and by Corollary 2.16, for all 𝜈 ∈ 𝐼0, 𝑡𝑝𝑏𝑠(𝜈,𝐴∖𝐺𝑒𝑛(𝜈), 𝐼) is
determined by 𝑡𝑝𝑏𝑠(𝜈,𝐴

′∖{𝜈}, 𝐼0). So for all 𝑎 ∈ 𝐼 and 𝜈 ∈ 𝐼0 with 𝑎 ∈ 𝐺𝑒𝑛(𝜈),
𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) is determined by 𝑡𝑝𝑏𝑠(𝜈,𝐴

′∖{𝜈}, 𝐼0) and 𝑡𝑝𝑏𝑠(𝑎,𝐴 ∩ 𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)).
Therefore |{𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) | 𝑎 ∈ 𝐼}| is bounded by

|{𝑡𝑝𝑏𝑠(𝜈,𝐴′, 𝐼0) | 𝜈 ∈ 𝐼0}| × 𝑆𝑢𝑝({𝐵𝜈 | 𝜈 ∈ 𝐼0})

where

𝐵𝜈 = |{𝑡𝑝𝑏𝑠(𝑎,𝐴 ∩𝐺𝑒𝑛(𝜈), 𝐺𝑒𝑛(𝜈)) | 𝑎 ∈ 𝐺𝑒𝑛(𝜈)}|.
From Lemma 2.28, we conclude that for all 𝜈 ∈ 𝐼0, 𝐵𝜈 < 𝜅. Since 𝜅 = 𝜆+,

𝑆𝑢𝑝({𝐵𝜈 | 𝜈 ∈ 𝐼0}) ≤ 𝜆. From Lemma 2.27 we know that |{𝑡𝑝𝑏𝑠(𝜈,𝐴′, 𝐼0) |
𝜈 ∈ 𝐼0}| < 𝜅, so |{𝑡𝑝𝑏𝑠(𝜈,𝐴′, 𝐼0) | 𝜈 ∈ 𝐼0}| ≤ 𝜆. We conclude |{𝑡𝑝𝑏𝑠(𝑎,𝐴, 𝐼) |
𝑎 ∈ 𝐼}| < 𝜅. □
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2.5. 𝜅-colorable. To finish the proof of Theorem 2.11 we will show that 𝐼 is 𝜅-
colorable. The depth of the elements will have a crucial role to define the 𝜅-color
function of 𝐼.

Lemma 2.30. 𝐼 is a 𝜅-colorable linear order.

Proof. For all 𝜈 ∈ 𝐼 let us define 𝑆𝑢𝑐𝑐𝐼(𝜈) as follows:

𝑆𝑢𝑐𝑐𝐼(𝜈) = {𝜎 ∈ 𝐼 | 𝑑𝑝(𝜎) = 𝑑𝑝(𝜈) + 1 & 𝜈 ↾ 𝑑𝑝(𝜎) = 𝜎 ↾ 𝑑𝑝(𝜎)}.
Let us fix a bijection 𝐺 : 𝜅 → 𝜅 × 𝜅, and 𝐺1, 𝐺2 be the functions such that

𝐺(𝛼) = (𝐺1(𝛼), 𝐺2(𝛼)). For all 𝜈 ∈ 𝐼 let us fix a bijection 𝑔𝜈 : 𝑆𝑢𝑐𝑐𝐼(𝜈) → 𝜅. Let
us define 𝐹 : 𝐼 → 𝜅 by

𝐹 (𝜈) =

{︃
0 if 𝑜(𝜈) = 0 or 𝑜(𝜈) is a limit ordinal

𝐺1(𝑔𝜈′(𝜈)) where 𝜈 ∈ 𝑆𝑢𝑐𝑐𝐼(𝜈′).

Claim 2.30.1. 𝐹 is a 𝜅-color function of 𝐼.

Proof. Let 𝐵 ⊆ 𝐼, |𝐵| < 𝜅, 𝑏 ∈ 𝐼∖𝐵, and 𝑝 = 𝑡𝑝𝑏𝑠(𝑏, 𝐵, 𝐼). Since |𝐵| < 𝜅, there
is 𝛼 < 𝜅 such that 𝐵 ⊂ 𝐼𝛼. Let 𝛽 = max{𝑜(𝑏), 𝛼}, by Fact 2.19, for all 𝜈 ∈ {𝑎 ∈
𝑆𝑢𝑐𝑐𝐼(𝑏) | 𝑜(𝑎) > 𝛽}, 𝑏 and 𝜈 have the same type of basic formulas over 𝐼𝛽∖{𝑏}. In
particular for all 𝜈 ∈ {𝑎 ∈ 𝑆𝑢𝑐𝑐𝐼(𝑏) | 𝑜(𝑎) > 𝛽}, 𝜈 |= 𝑝. By the way 𝐹 was define,
we conclude that for any 𝜌 < 𝜅, |{𝑎 ∈ 𝑆𝑢𝑐𝑐𝐼(𝑏) | 𝑜(𝑎) > 𝛽 & 𝐹 (𝑎) = 𝜌}| = 𝜅.
Which implies that for any 𝜌 < 𝜅, |{𝑎 ∈ 𝑆𝑢𝑐𝑐𝐼(𝑏) | 𝑎 |= 𝑝 & 𝐹 (𝑎) = 𝜌}| = 𝜅. □

□

The previous lemmas prove Theorem 2.11, 𝐼 is 𝜀-dense, (< 𝜅)-stable, (𝜅, 𝜀)-nice,
and 𝜅-colorable.

As it was mentioned before, 𝜀-dense and (𝜅, 𝜇)-nice are two notions of density.
We constructed linear orders when 𝜀 = 𝜇, this is enough for our purposes.

3. Trees

3.1. Coloured trees. Coloured trees were introduced by Hyttinen and Weinstein
in [17] to construct models of stable unsuperstable theories. Variations of coloured
trees have been used to construct models of other non-classifiable theories, by
Hyttinen-Moreno in [20], and by Moreno in [36] and [37].

Let 𝑡 be a tree, for every 𝑥 ∈ 𝑡 we denote by ℎ𝑡(𝑥) the height of 𝑥, the order
type of {𝑦 ∈ 𝑡|𝑦 ≺ 𝑥}. Define (𝑡)𝛼 = {𝑥 ∈ 𝑡|ℎ𝑡(𝑥) = 𝛼} and (𝑡)<𝛼 = ∪𝛽<𝛼(𝑡)𝛽 ,
denote by 𝑥 ↾ 𝛼 the unique 𝑦 ∈ 𝑡 such that 𝑦 ∈ (𝑡)𝛼 and 𝑦 ≺ 𝑥. If 𝑥, 𝑦 ∈ 𝑡 and
{𝑧 ∈ 𝑡|𝑧 ≺ 𝑥} = {𝑧 ∈ 𝑡|𝑧 ≺ 𝑦}, then we say that 𝑥 and 𝑦 are ∼-related, 𝑥 ∼ 𝑦, and
we denote by [𝑥] the equivalence class of 𝑥 for ∼.

An 𝛼, 𝛽-tree is a tree 𝑡 with the following properties:

∙ |[𝑥]| < 𝛼 for every 𝑥 ∈ 𝑡.
∙ All the branches have order type less than 𝛽 in 𝑡.
∙ 𝑡 has a unique root.
∙ If 𝑥, 𝑦 ∈ 𝑡, 𝑥 and 𝑦 have no immediate predecessors and 𝑥 ∼ 𝑦, then 𝑥 = 𝑦.

Definition 3.1. Let 𝛾 be a regular cardinal smaller than 𝜅, and 𝛽 a cardinal
smaller or equal to 𝜅. A coloured tree is a pair (𝑡, 𝑐), where 𝑡 is a 𝜅+, (𝛾 + 2)-tree
and 𝑐 is a map 𝑐 : (𝑡)𝛾 → 𝛽.

Two coloured trees (𝑡, 𝑐) and (𝑡′, 𝑐′) are isomorphic, if there is a trees isomorphism
𝑓 : 𝑡→ 𝑡′ such that for every 𝑥 ∈ (𝑡)𝛾 , 𝑐(𝑥) = 𝑐′(𝑓(𝑥)).

Order the set 𝛾×𝜅×𝜅×𝜅×𝜅 lexicographically, (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5) > (𝛼′
1, 𝛼

′
2, 𝛼

′
3, 𝛼

′
4, 𝛼

′
5)

if for some 1 ≤ 𝑘 ≤ 5, 𝛼𝑘 > 𝛼′
𝑘 and for every 𝑖 < 𝑘, 𝛼𝑖 = 𝛼′

𝑖. Order the set
(𝛾 × 𝜅× 𝜅× 𝜅× 𝜅)≤𝛾 as a tree by initial segments.
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For all 𝑓 ∈ 𝛽𝜅, define the tree (𝑅𝑓 , 𝑟𝑓 ) as, 𝑅𝑓 the set of all strictly increasing func-
tions from some 𝛼 ≤ 𝛾 to 𝜅 and for each 𝜂 with domain 𝛾, 𝑟𝑓 (𝜂) = 𝑓(𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂))).

For every pair of ordinals 𝛼 and 𝜚, 𝛼 < 𝜚 < 𝜅 and 𝑖 < 𝛾 define

𝑅(𝛼, 𝜚, 𝑖) =
⋃︁

𝑖<𝑗≤𝛾

{𝜂 : [𝑖, 𝑗) → [𝛼, 𝜚) | 𝜂 strictly increasing}.

Definition 3.2. If 𝛼 < 𝜚 < 𝜅 and 𝛼, 𝜚, 𝜌 ̸= 0, let {𝑍𝛼,𝜚
𝜌 |𝜌 < 𝜅} be an enumeration

of all downward closed subtrees of 𝑅(𝛼, 𝜚, 𝑖) for all 𝑖, in such a way that each

possible coloured tree appears cofinally often in the enumeration. Let 𝑍0,0
0 be the

tree (𝑅𝑓 , 𝑟𝑓 ).

This enumeration is possible because there are at most

|
⋃︁
𝑖<𝛾

𝒫(𝑅(𝛼, 𝜚, 𝑖))| ≤ 𝛾 × 𝜅 = 𝜅

downward closed coloured subtrees. Since for all 𝛼 < 𝜚 < 𝜅, |𝑅(𝛼, 𝜚, 𝑖)| < 𝜅 there
are at most 𝜅 × 𝜅<𝜅 = 𝜅 coloured trees. Denote by 𝑄(𝑍𝛼,𝜚

𝜌 ) the unique ordinal 𝑖
such that 𝑍𝛼,𝜚

𝜌 ⊂ 𝑅(𝛼, 𝜚, 𝑖).

Definition 3.3. Define for each 𝑓 ∈ 𝛽𝜅 the coloured tree (𝐽𝑓 , 𝑐𝑓 ) by the following
construction.

For every 𝑓 ∈ 𝛽𝜅 define 𝐽𝑓 = (𝐽𝑓 , 𝑐𝑓 ) as the tree of all 𝜂 : 𝑠 → 𝛾 × 𝜅4, where
𝑠 ≤ 𝛾, ordered by end extension, and such that the following conditions hold for all
𝑖, 𝑗 < 𝑠:

Denote by 𝜂𝑖, 1 < 𝑖 < 5, the functions from 𝑠 to 𝜅 that satisfies,

𝜂(𝑛) = (𝜂1(𝑛), 𝜂2(𝑛), 𝜂3(𝑛), 𝜂4(𝑛), 𝜂5(𝑛)).

(1) 𝜂 ↾ 𝑛 ∈ 𝐽𝑓 for all 𝑛 < 𝑠.
(2) 𝜂 is strictly increasing with respect to the lexicographical order on 𝛾 × 𝜅4.
(3) 𝜂1(𝑖) ≤ 𝜂1(𝑖+ 1) ≤ 𝜂1(𝑖) + 1.
(4) 𝜂1(𝑖) = 0 implies 𝜂2(𝑖) = 𝜂3(𝑖) = 𝜂4(𝑖) = 0.
(5) 𝜂2(𝑖) ≥ 𝜂3(𝑖) implies 𝜂2(𝑖) = 0.
(6) 𝜂1(𝑖) < 𝜂1(𝑖+ 1) implies 𝜂2(𝑖+ 1) ≥ 𝜂3(𝑖) + 𝜂4(𝑖).
(7) For every limit ordinal 𝛼, 𝜂𝑘(𝛼) = 𝑠𝑢𝑝𝜄<𝛼{𝜂𝑘(𝜄)} for 𝑘 ∈ {1, 2}.
(8) 𝜂1(𝑖) = 𝜂1(𝑗) implies 𝜂𝑘(𝑖) = 𝜂𝑘(𝑗) for 𝑘 ∈ {2, 3, 4}.
(9) If for some 𝑘 < 𝛾, [𝑖, 𝑗) = 𝜂−1

1 {𝑘}, then

𝜂5 ↾ [𝑖, 𝑗) ∈ 𝑍
𝜂2(𝑖),𝜂3(𝑖)
𝜂4(𝑖)

.

Note that 9 implies 𝑍
𝜂2(𝑖),𝜂3(𝑖)
𝜂4(𝑖)

⊂ 𝑅(𝛼, 𝜚, 𝑖)

(10) If 𝑠 = 𝛾, then either
(a) there exists an ordinal number 𝑚 such that for every 𝑘 < 𝑚, 𝜂1(𝑘) <

𝜂1(𝑚), for every 𝑘′ ≥ 𝑚, 𝜂1(𝑘) = 𝜂1(𝑚), and the color of 𝜂 is deter-

mined by 𝑍
𝜂2(𝑚),𝜂3(𝑚)
𝜂4(𝑚) :

𝑐𝑓 (𝜂) = 𝑐(𝜂5 ↾ [𝑚, 𝛾))

where 𝑐 is the colouring function of 𝑍
𝜂2(𝑚),𝜂3(𝑚)
𝜂4(𝑚) ;

or
(b) there is no such ordinal 𝑚 and then 𝑐𝑓 (𝜂) = 𝑓(𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂5))).

At first sight, these trees look very general. But actually, these trees are coding
the =𝛽

𝛾 -class of any 𝑓 ∈ 𝛽𝜅 . A simpler version of the following lemma, was stated
in [36] without proof due to the length of the article. The version 𝛾 = 𝜔 of the
following lemma, can be found in [17] Theorem 2.5 and [20] Lemma 4.7.



SHELAH’S MAIN GAP AND THE GENERALIZED BOREL REDUCIBILITY 27

Lemma 3.4. Suppose 𝛾 < 𝜅 is such that for all 𝜖 < 𝜅, 𝜖𝛾 < 𝜅. For every 𝑓, 𝑔 ∈ 𝛽𝜅

the following holds

𝑓 =𝛽
𝛾 𝑔 ⇔ 𝐽𝑓 ∼=𝑐𝑡 𝐽𝑔

where ∼=𝑐𝑡 is the isomorphism of coloured trees.

We will prove this lemma in the following two subsections.

3.2. Filtrations. To prove this lemma, we have to introduce the notion of fil-
tration. Filtrations will be important in the last subsection, to understand the
𝜅-representation of ordered coloured trees. Given a coloured tree (𝑡, 𝑐), we say that
a sequence (𝐼𝛼)𝛼<𝜅 is a filtration of 𝑡 if the following hold:

∙ it is an increasing sequence of downwards closed subsets of 𝑡;
∙
⋃︀

𝛼<𝜅 𝐼𝛼 = 𝑡;
∙ if 𝜌 < 𝜅 is a limit ordinal, then 𝐼𝜌 =

⋃︀
𝛼<𝜌 𝐼𝛼;

∙ for all 𝛼 < 𝜅, |𝐼𝛼| < 𝜅.

Notice that a filtration of (𝑡, 𝑐) is a 𝜅-representation of 𝑡 made out of downwards
closed subsets of 𝑡.

Definition 3.5. Let (𝑡, 𝑐) be a coloured tree and ℐ = (𝐼𝛼)𝛼<𝜅 a filtration of 𝑡. Let
us define 𝐻ℐ,𝑡 ∈ 𝜅𝜅 as follows.

For every 𝛼 < 𝜅 define 𝐵𝛼 as the set of all 𝑥 ∈ 𝑡𝛾 that are not elements of 𝐼𝛼,
and for all 𝜚 < 𝛾, 𝑥 ↾ 𝜚 ∈ 𝐼𝛼.

∙ If 𝐵𝛼 is not empty and there is 𝜄 such that, for all 𝑥 ∈ 𝐵𝛼, 𝑐(𝑥) = 𝜄, then
let 𝐻ℐ,𝑡(𝛼) = 𝜄;

∙ let 𝐻ℐ,𝑡(𝛼) = 0 otherwise.

Notice that for any two filtrations (𝐼𝛼)𝛼<𝜅 and (𝐽𝛼)𝛼<𝜅 of the same coloured
tree, there is a club 𝐶 such that for all 𝛼 ∈ 𝐶, 𝐼𝛼 = 𝐽𝛼. So, for any two filtrations
ℐ = (𝐼𝛼)𝛼<𝜅 and 𝒥 = (𝐽𝛼)𝛼<𝜅 of (𝑡, 𝑐), 𝐻ℐ,𝑡 =𝛽

𝛾 𝐻𝒥 ,𝑡. We say that a filtration is
a good filtration if for all 𝛼, 𝐵𝛼 ̸= ∅ implies that 𝑐 is constant on 𝐵𝛼.

Fact 3.6 (Hyttinen-Kulikov, [17] Lemma 2.4). Suppose (𝑡0, 𝑐0) and (𝑡1, 𝑐1) are
isomorphic coloured trees, and ℐ = (𝐼𝛼)𝛼<𝜅 and 𝒥 = (𝐽𝛼)𝛼<𝜅 are good filtrations
of (𝑡0, 𝑐0) and (𝑡1, 𝑐1) respectively. Then 𝐻ℐ,𝑡0 =𝛽

𝛾 𝐻𝒥 ,𝑡1 .

For each 𝑓 ∈ 𝛽𝜅 let us proceed to define a good filtration (𝐽𝛼
𝑓 )𝛼<𝜅 of 𝐽𝑓 . For

each 𝛼 < 𝜅 define 𝐽𝛼
𝑓 as

𝐽𝛼
𝑓 = {𝜂 ∈ 𝐽𝑓 |𝑟𝑎𝑛𝑔(𝜂) ⊂ 𝛾 × (𝜄)4 for some 𝜄 < 𝛼}.

Notice that for any 𝑘 ∈ 𝑟𝑎𝑛𝑔(𝜂1), [𝑖, 𝑗) = 𝜂−1
1 (𝑘) and if 𝑖+ 1 < 𝑗, then 𝜂5 ↾ [𝑖, 𝑗)

is strictly increasing. If 𝜂1(𝑖) < 𝜂1(𝑖 + 1), by Definition 3.3 item 6, 𝜂2(𝑖 + 1) ≥
𝜂3(𝑖) + 𝜂4(𝑖), so 𝜂5(𝑖) < 𝜂3(𝑖) ≤ 𝜂2(𝑖 + 1) ≤ 𝜂5(𝑖 + 1). If 𝛼 is a limit ordinal, by
Definition 3.3 items 7 and 8, 𝜂5(𝜄) < 𝜂2(𝜄 + 1) < 𝜂2(𝛼) ≤ 𝜂5(𝛼) holds for every
𝜄 < 𝛼. Thus 𝜂5 is strictly increasing. If 𝜂 ↾𝑛 ∈ 𝐽𝑓 for every 𝑛, then 𝜂 ∈ 𝐽𝑓 . Clearly
every maximal branch has order type 𝛾 + 1, every chain 𝜂 ↾ 1 ⊂ 𝜂 ↾ 2 ⊂ 𝜂 ↾ 3 ⊆ · · ·
of any length, has a unique limit in the tree, and every element in 𝑡𝜚, 𝜚 < 𝛾, has
an infinite number of successors (at most 𝜅).

Suppose 𝑟𝑎𝑛𝑔(𝜂1) = 𝛾. Since 𝜂5 is increasing and 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂3)) ≥ 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂5)) ≥
𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂2)). By Definition 3.3 item 6, 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂2)) ≥ 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂3)) and
𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂2)) ≥ 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂4)), this leads us to

(4) 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂4)) ≤ 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂3)) = 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂5)) = 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂2)).

If 𝜂 ↾ 𝑘 ∈ 𝐽𝛼
𝑓 holds for every 𝑘 ∈ 𝛾 and 𝜂 /∈ 𝐽𝛼

𝑓 , then

(5) 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂5)) = 𝛼.
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Fact 3.7 (Hyttinen-Kulikov, [17] Claim 2.7 and Hyttinen-Moreno, [20] Claim 4.9).
Suppose 𝛾 < 𝜅 is such that for all 𝜖 < 𝜅, 𝜖𝛾 < 𝜅. For all 𝑓 ∈ 𝛽𝜅, |𝐽𝑓 | = 𝜅,
𝒥 = (𝐽𝛼

𝑓 )𝛼<𝜅 is a good filtration of 𝐽𝑓 and 𝐻𝒥 ,𝐽𝑓
=𝛽

𝛾 𝑓

We conclude one of the directions of Lemma 3.4.

Lemma 3.8. Suppose 𝛾 < 𝜅 is such that for all 𝜖 < 𝜅, 𝜖𝛾 < 𝜅. For all 𝑓, 𝑔 ∈ 𝛽𝜅 if
𝐽𝑓 ∼=𝑐𝑡 𝐽𝑔, then 𝑓 =𝛽

𝛾 𝑔.

3.3. The isomorphism of coloured trees. In this section we will prove the
missing direction of Lemma 3.4.

Fact 3.9 (Hyttinen-Kulikov, [17] Claim 2.6 and Hyttinen-Moreno, [20] Claim 4.8).
Suppose 𝜉 ∈ 𝐽𝛼

𝑓 and 𝜂 ∈ 𝐽𝑓 . If 𝑑𝑜𝑚(𝜉) is a successor ordinal smaller than 𝛾, 𝜉 ⊊ 𝜂

and for every 𝑘 in 𝑑𝑜𝑚(𝜂)∖𝑑𝑜𝑚(𝜉), 𝜂1(𝑘) = 𝜉1(𝑚𝑎𝑥(𝑑𝑜𝑚(𝜉))) and 𝜂1(𝑘) > 0, then
𝜂 ∈ 𝐽𝛼

𝑓 .

We say that a set 𝑋 is a 𝛾-club if 𝑋 is unbounded and it is closed under 𝛾-limits.
Notice that 𝜂 =𝛽

𝛾 𝜉 holds if and only if {𝛼 < 𝜅 | 𝑐𝑓(𝛼) = 𝛾 & 𝜂(𝛼) = 𝜉(𝛼)} contains
a 𝛾-club.

Lemma 3.10. Suppose 𝛾 < 𝜅 is such that for all 𝜖 < 𝜅, 𝜖𝛾 < 𝜅. For every 𝑓, 𝑔 ∈ 𝛽𝜅

if 𝑓 =𝛽
𝛾 𝑔, then 𝐽𝑓 ∼=𝑐𝑡 𝐽𝑔.

Proof. Let 𝐶 ′ ⊆ {𝛼 < 𝜅|𝑐𝑓(𝛼) = 𝛾 & 𝑓(𝛼) = 𝑔(𝛼)} be a 𝛾-club testifying 𝑓 =𝛽
𝛾 𝑔,

and let 𝐶 ⊃ 𝐶 ′ be the closure of 𝐶 ′ under limits. We are going to construct an
isomorphism between 𝐽𝑓 and 𝐽𝑔 by induction.

Let us define continuous increasing sequences (𝛼𝑖)𝑖<𝜅 of ordinals and (𝐹𝛼𝑖
)𝑖<𝜅

of partial color-preserving isomorphism from 𝐽𝑓 to 𝐽𝑔 such that:

a) If 𝑖 is a successor, then 𝛼𝑖 is a successor ordinal and there exists 𝜄 ∈ 𝐶 such
that 𝛼𝑖−1 < 𝜄 < 𝛼𝑖 and thus if 𝑖 is a limit, 𝛼𝑖 ∈ 𝐶.

b) Suppose that 𝑖 = 𝜌+ 𝑛, where 𝜌 is a limit ordinal or 0, and 𝑛 < 𝜔 is even.
Then 𝑑𝑜𝑚(𝐹𝛼𝑖

) = 𝐽𝛼𝑖

𝑓 .

c) Suppose that 𝑖 = 𝜌+ 𝑛, where 𝜌 is a limit ordinal or 0, and 𝑛 < 𝜔 is odd.
Then 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖

) = 𝐽𝛼𝑖
𝑔 .

d) If 𝑑𝑜𝑚(𝜉) < 𝛾, 𝜉 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖
), 𝜂 ↾ 𝑑𝑜𝑚(𝜉) = 𝜉 and for every 𝑘 ≥ 𝑑𝑜𝑚(𝜉)

𝜂1(𝑘) = 𝜉1(𝑠𝑢𝑝(𝑑𝑜𝑚(𝜉))) and 𝜂1(𝑘) > 0

then 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖). Similar for 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖).
e) If 𝜉 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖) and 𝑘 < 𝑑𝑜𝑚(𝜉), then 𝜉 ↾ 𝑘 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖).
f) For all 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖

), 𝑑𝑜𝑚(𝜂) = 𝑑𝑜𝑚(𝐹𝛼𝑖
(𝜂)).

For every ordinal 𝛼 denote by 𝑀(𝛼) the ordinal that is order isomorphic to the
lexicographic order of 𝛾 × 𝛼4.

First step (i=0).
Let 𝛼0 = 𝜄+ 1 for some 𝜄 ∈ 𝐶. Let 𝜌 be an ordinal such that there is a coloured

tree isomorphism ℎ : 𝑍
0,𝑀(𝜄)
𝜌 → 𝐽𝛼0

𝑓 and 𝑄(𝑍
0,𝑀(𝜄)
𝜌 ) = 0. It is easy to see that such

𝜌 exists, by the way our enumeration was chosen.

Since 𝑍
0,𝑀(𝜄)
𝜌 and 𝐽𝛼0

𝑓 are closed under initial segments, then |𝑑𝑜𝑚(ℎ−1(𝜂))| =

|𝑑𝑜𝑚(𝜂)|. Also both domains are intervals containing zero, therefore 𝑑𝑜𝑚(ℎ−1(𝜂)) =
𝑑𝑜𝑚(𝜂).

Define 𝐹𝛼0
(𝜂) for 𝜂 ∈ 𝐽𝛼0

𝑓 as follows, let 𝐹𝛼0
(𝜂) be the function 𝜉 with 𝑑𝑜𝑚(𝜉) =

𝑑𝑜𝑚(𝜂), and for all 𝜅 < 𝑑𝑜𝑚(𝜉):

∙ 𝜉1(𝑘) = 1
∙ 𝜉2(𝑘) = 0
∙ 𝜉3(𝑘) = 𝑀(𝜄)
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∙ 𝜉4(𝑘) = 𝜌
∙ 𝜉5(𝑘) = ℎ−1(𝜂)(𝑘)

To check that 𝜉 ∈ 𝐽𝑔, we will check every item of Definition 3.3. Since 𝑟𝑎𝑛𝑔(𝐹𝛼0
) =

{1} × {0} × {𝑀(𝜄)} × {𝜌} × 𝑍
0,𝑀(𝜄)
𝜌 , 𝜉 satisfies 1. Also 𝜉5 = ℎ−1(𝜂) ∈ 𝑍

0,𝑀(𝜄)
𝜌 ,

by definition of 𝑍𝛼,𝜄
𝜌 , we know that 𝜉5 is strictly increasing with respect to the

lexicographic order. Thus 𝜉 satisfies item 2. Notice that 𝜉 is constant in every
component except for 𝜉5, therefore 𝜉 satisfies the items 3, 6, 7, 8, 10 (a). Clearly
𝜉1(𝑖) ̸= 0. So 𝜉 satisfies item 4. Since 𝜉2(𝑘) = 0 for every 𝑘, 𝜉 satisfies 5. Notice

that [0, 𝛾) = 𝜉−1
1 (1) and 𝑍

𝜉2(𝑘),𝜉3(𝑘)
𝜉4(𝑘)

= 𝑍
0,𝑀(𝜄)
𝜌 for every 𝑘, therefore 𝜉5 ∈ 𝑍

𝜉2(0),𝜉3(0)
𝜉4(0)

and 𝜉 satisfies 7.
Let us show that the conditions a)-f) are satisfied, the conditions a) and c) are

clearly satisfied. By the way 𝐹𝛼0
was defined, 𝑑𝑜𝑚(𝐹𝛼0

) = 𝐽𝛼0

𝑓 and 𝑑𝑜𝑚(𝜂) =

𝑑𝑜𝑚(𝐹𝛼0
(𝜂)), these are the conditions b), e) and f). Since 𝑑𝑜𝑚(𝐹𝛼0

) = 𝐽𝛼0

𝑓 , Fact

3.9 implies d) for 𝑑𝑜𝑚(𝐹𝛼0). For d) with 𝑟𝑎𝑛𝑔(𝐹𝛼0), suppose 𝜉 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼0) and
𝜂 ∈ 𝐽𝑔 are as in the assumption. Then 𝜂1(𝑘) = 𝜉1(𝑘) = 1 for every 𝑘 < 𝑑𝑜𝑚(𝜂). By
8 in 𝐽𝑔, 𝜂2(𝑘) = 𝜉2(𝑘) = 0, 𝜂3(𝑘) = 𝜉3(𝑘) = 𝑀(𝜄) and 𝜂4(𝑘) = 𝜉4(𝑘) = 𝜌 for every

𝑘 < 𝑑𝑜𝑚(𝜂). By 9 in 𝐽𝑔, 𝜂5 ∈ 𝑍
0,𝑀(𝜄)
𝜌 and since 𝑟𝑎𝑛𝑔(𝐹𝛼0

) = {1}×{0}×{𝑀(𝜄)}×
{𝜌} × 𝑍

0,𝑀(𝜄)
𝜌 , we can conclude that 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼0

).
Odd successor step.
Suppose that 𝑗 < 𝑘 is a successor ordinal such that 𝑗 = 𝜄𝑗 + 𝑛𝑗 for some limit

ordinal (or 0) 𝜄𝑗 and an odd integer 𝑛𝑗 . Assume 𝛼𝑙 and 𝐹𝛼𝑙
are defined for every

𝑙 < 𝑗 satisfying the conditions a)-f).
Let 𝛼𝑗 = 𝜄+ 1, where 𝜄 ∈ 𝐶 is such that 𝜄 > 𝛼𝑗−1, and 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1

) ⊂ 𝐽 𝜄
𝑔, such

a 𝜄 exists because |𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1
)| ≤ 2|𝛼𝑗−1| and for all 𝜖 < 𝜅, 𝜖𝛾 < 𝜅.

When 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1
) has domain 𝑚 < 𝛾, define

𝑊 (𝜂) = {𝜁|𝑑𝑜𝑚(𝜁) = [𝑚, 𝑠),𝑚 < 𝑠 ≤ 𝛾, 𝜂⌢⟨𝑚, 𝜁(𝑚)⟩ /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1) and 𝜂⌢𝜁 ∈ 𝐽𝛼𝑗
𝑔 }

with the color function 𝑐𝑊 (𝜂)(𝜁) = 𝑐𝑔(𝜂⌢𝜁) for every 𝜁 ∈ 𝑊 (𝜂) with 𝑠 = 𝛾.

Denote 𝜉′ = 𝐹−1
𝛼𝑗−1

(𝜂), 𝛼 = 𝜉′3(𝑚 − 1) + 𝜉′4(𝑚 − 1) (if 𝑚 is a limit ordinal, then

𝛼 = 𝑠𝑢𝑝𝜚<𝑚𝜉2(𝜚)) and 𝜚 = 𝛼+𝑀(𝛼𝑗). Choose an ordinal 𝜌𝜂 such that𝑄(𝑍𝛼,𝜚
𝜌𝜂

) = 𝑚

and there is an isomorphism ℎ𝜂 : 𝑍𝛼,𝜚
𝜌𝜂

→𝑊 (𝜂). We will define 𝐹𝛼𝑗
by defining its

inverse such that 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗
) = 𝐽

𝛼𝑗
𝑔 .

Each 𝜂 ∈ 𝐽
𝛼𝑗
𝑔 satisfies one of the followings:

(*) 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1).
(**) ∃𝑚 < 𝑑𝑜𝑚(𝜂)(𝜂 ↾𝑚 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1

) ∧ 𝜂 ↾ (𝑚+ 1) /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1
)).

(***) ∀𝑚 < 𝑑𝑜𝑚(𝜂)(𝜂 ↾ (𝑚+ 1) ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1
) ∧ 𝜂 /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1

)).

We define 𝜉 = 𝐹−1
𝛼𝑗

(𝜂) as follows. There are three cases:

Case 𝜂 satisfies (*).
Define 𝜉(𝑛) = 𝐹−1

𝛼𝑗−1
(𝜂)(𝑛) for all 𝑛 < 𝑑𝑜𝑚(𝜂).

Case 𝜂 satisfies (**).
This case is divided in two subcases, when 𝑚 is a limit ordinal and when 𝑚 is a

successor ordinal. Let 𝑚 witnesses (**) for 𝜂 and suppose 𝑚 is a successor ordinal.
For every 𝑛 < 𝑑𝑜𝑚(𝜉)

∙ If 𝑛 < 𝑚, then 𝜉(𝑛) = 𝐹−1
𝛼𝑗−1

(𝜂 ↾𝑚)(𝑛).
∙ For every 𝑛 ≥ 𝑚. Let

– 𝜉1(𝑛) = 𝜉1(𝑚− 1) + 1
– 𝜉2(𝑛) = 𝜉3(𝑚− 1) + 𝜉4(𝑚− 1)
– 𝜉3(𝑛) = 𝜉2(𝑚) +𝑀(𝛼𝑗)
– 𝜉4(𝑛) = 𝜌𝜂↾𝑚
– 𝜉5(𝑛) = ℎ−1

𝜂↾𝑚(𝜂 ↾ [𝑚, 𝑑𝑜𝑚(𝜂)))(𝑛)
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Notice that, 𝜂 ↾ [𝑚, 𝑑𝑜𝑚(𝜂)) is an element of 𝑊 (𝜂 ↾𝑚), this makes possible the
definition of 𝜉5.

Let us check the items of Definition 3.3 to see that 𝜉 ∈ 𝐽𝑓 . Clearly item 1 is
satisfied. By the induction hypothesis, 𝜉 ↾𝑚 is increasing, 𝜉1(𝑚) = 𝜉1(𝑚−1) + 1 so
𝜉(𝑚− 1) < 𝜉(𝑚), and 𝜉𝑘 is constant on [𝑚, 𝛾) for 𝑘 ∈ {1, 2, 3, 4}. Since ℎ−1

𝜂↾𝑚(𝜂) ∈
𝑍𝛼,𝜚
𝜌𝜂

, 𝜉5 is increasing, 𝜉 is increasing with respect to the lexicographic order. So

𝜉 satisfies item 2. We conclude that 𝜉1(𝑖) ≤ 𝜉1(𝑖 + 1) ≤ 𝜉1(𝑖) + 1, so 𝜉 satisfies
item 3. For every 𝑖 < 𝛾, 𝜉1(𝑖) = 0 implies 𝑖 < 𝑚, so 𝜉(𝑖) = 𝐹−1

𝛼𝑗−1
(𝜂 ↾ 𝑚)(𝑖)

and by the induction hypothesis, 𝜉 satisfies item 4. By the induction hypothesis,
𝜉 ↾𝑚 ∈ 𝐽𝑓 . Since 𝜉2(𝑛) = 𝜉3(𝑚− 1) + 𝜉4(𝑚− 1) holds for every 𝑛 ≥ 𝑚, 𝜉 satisfies
5. By the induction hypothesis, for every 𝑖 + 1 < 𝑚, 𝜉1(𝑖) < 𝜉1(𝑖 + 1) implies
𝜉2(𝑖+ 1) ≥ 𝜉3(𝑖) + 𝜉4(𝑖). On the other hand 𝜉1(𝑖) = 𝜉1(𝑗) implies 𝜉𝑘(𝑖) = 𝜉𝑘(𝑗) for
𝑘 ∈ {2, 3, 4}. Clearly 𝜉2(𝑚) ≥ 𝜉3(𝑚−1) + 𝜉4(𝑚−1) and 𝜉𝑘(𝑖) = 𝜉𝑘(𝑖+ 1) for 𝑖 ≥ 𝑚
and 𝑘 ∈ {2, 3, 4}, then 𝜉 satisfies items 6 and 8.

By the induction hypothesis, 𝜉 ↾ 𝑚 ∈ 𝐽𝑓 . Since 𝜉1(𝑛) = 𝜉1(𝑚 − 1) + 1 and
𝜉2(𝑛) = 𝜉3(𝑚 − 1) + 𝜉4(𝑚 − 1) hold for every 𝑛 ≥ 𝑚, 𝜉 satisfies 7. Suppose
[𝑖, 𝑗) = 𝜉−1

1 (𝑘) for some 𝑘 in 𝑟𝑎𝑛𝑔(𝜉). Either 𝑗 < 𝑚 or 𝑚 = 𝑖. If 𝑗 < 𝑚, then

by the induction hypothesis 𝜉5 ↾ [𝑖, 𝑗) ∈ 𝑍
𝜉2(𝑖),𝜉3(𝑖)
𝜉4(𝑖)

. If [𝑖, 𝑗) = [𝑚, 𝑑𝑜𝑚(𝜉)), then

𝜉5 ↾ [𝑖, 𝑗) = ℎ−1
𝜂↾𝑚(𝜂 ↾ [𝑚, 𝑑𝑜𝑚(𝜉))) ∈ 𝑍

𝜉2(𝑚),𝜉3(𝑚)
𝜉4(𝑚) . Thus 𝜉 satisfies item 9. Since 𝜉

is constant on [𝑚, 𝛾), 𝜉 satisfies 10 (a). Finally by item 10 (a) when 𝑑𝑜𝑚(𝜁) = 𝛾,

we conclude 𝑐𝑓 (𝜉) = 𝑐(𝜉5 ↾ [𝑚, 𝛾)), where 𝑐 is the color of 𝑍
𝜉2(𝑚),𝜉3(𝑚)
𝜉4(𝑚) . Since

𝜉5 ↾ [𝑚, 𝛾) = ℎ−1
𝜂↾𝑚(𝜂↾ [𝑚, 𝛾)), 𝑐𝑓 (𝜉) = 𝑐(ℎ−1

𝜂↾𝑚(𝜂↾ [𝑚, 𝛾))). Since ℎ is an isomorphism,

𝑐𝑓 (𝜉) = 𝑐𝑊 (𝜂↾𝑚)(𝜂 ↾ [𝑚, 𝛾)) = 𝑐𝑔(𝜂).
Let𝑚 witnesses (**) for 𝜂 and suppose𝑚 is a limit ordinal. For every 𝑛 < 𝑑𝑜𝑚(𝜉)

∙ If 𝑛 < 𝑚, then 𝜉(𝑛) = 𝐹−1
𝛼𝑗−1

(𝜂 ↾𝑚)(𝑛).
∙ For every 𝑛 ≥ 𝑚. Let

– 𝜉1(𝑛) = 𝑠𝑢𝑝𝜚<𝑚𝜉1(𝜚)
– 𝜉2(𝑛) = 𝑠𝑢𝑝𝜚<𝑚𝜉2(𝜚)
– 𝜉3(𝑛) = 𝜉2(𝑚) +𝑀(𝛼𝑗)
– 𝜉4(𝑛) = 𝜌𝜂↾𝑚
– 𝜉5(𝑛) = ℎ−1

𝜂↾𝑚(𝜂 ↾ [𝑚, 𝑑𝑜𝑚(𝜂)))(𝑛).

Notice that, 𝜂 ↾ [𝑚, 𝑑𝑜𝑚(𝜂)) is an element of 𝑊 (𝜂 ↾𝑚), this makes possible the
definition of 𝜉5.

Let us check the items of Definition 3.3 to see that 𝜉 ∈ 𝐽𝑓 . Clearly item 1 is
satisfied. By induction hypothesis, 𝜉 ↾𝑚 is increasing and 𝜉1(𝑚) = 𝑠𝑢𝑝𝜚<𝑚𝜉1(𝜚). So
𝜉(𝜚) < 𝜉(𝑚) holds for every 𝜚 < 𝑚, and 𝜉𝑘 is constant on [𝑚, 𝛾) for 𝑘 ∈ {1, 2, 3, 4}.
Since ℎ−1

𝜂↾𝑚(𝜂) ∈ 𝑍𝛼,𝜚
𝜌𝜂

, 𝜉5 is increasing. We conclude that 𝜉 is increasing with

respect to the lexicographic order, so 𝜉 satisfies item 2. We conclude that 𝜉1(𝑖) ≤
𝜉1(𝑖+ 1) ≤ 𝜉1(𝑖) + 1, so 𝜉 satisfies item 3. For every 𝑖 < 𝛾, 𝜉1(𝑖) = 0 implies 𝑖 < 𝑚,
so 𝜉(𝑖) = 𝐹−1

𝛼𝑗−1
(𝜂 ↾𝑚)(𝑖) and by the induction hypothesis 𝜉 satisfies item 4. By the

induction hypothesis, 𝜉↾𝑚 ∈ 𝐽𝑓 . Since 𝜉2(𝑛) = 𝑠𝑢𝑝𝜚<𝑚𝜉2(𝜚) holds for every 𝑛 ≥ 𝑚,
𝜉 satisfies 5. By the induction hypothesis, for every 𝑖 + 1 < 𝑚, 𝜉1(𝑖) < 𝜉1(𝑖 + 1)
implies 𝜉2(𝑖+1) ≥ 𝜉3(𝑖)+𝜉4(𝑖). On the other hand 𝜉1(𝑖) = 𝜉1(𝑗) implies 𝜉𝑘(𝑖) = 𝜉𝑘(𝑗)
for 𝑘 ∈ {2, 3, 4}. Clearly 𝜉2(𝑚) ≥ 𝑠𝑢𝑝𝜚<𝑚𝜉3(𝜚) and 𝜉𝑘(𝑖) = 𝜉𝑘(𝑗) for 𝑗, 𝑖 ≥ 𝑚 and
𝑘 ∈ {2, 3, 4}, then 𝜉 satisfies items 6 and 8.

By the induction hypothesis, 𝜉 ↾𝑚 ∈ 𝐽𝑓 . Since 𝜉1(𝑛) = 𝑠𝑢𝑝𝜚<𝑚𝜉1(𝜚) and 𝜉2(𝑛) =

𝑠𝑢𝑝𝜚<𝑚𝜉2(𝜚) hold for every 𝑛 ≥ 𝑚, 𝜉 satisfies 7. Suppose [𝑖, 𝑗) = 𝜉−1
1 (𝑘) for some

𝑘 in 𝑟𝑎𝑛𝑔(𝜉). Either 𝑗 < 𝑚 or 𝑚 = 𝑖, notice that if 𝑖 < 𝑚 < 𝑗, then 𝜂 ↾ (𝑚+ 1) ∈
𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1

)). If 𝑗 < 𝑚, then by the induction hypothesis 𝜉5 ↾ [𝑖, 𝑗) ∈ 𝑍
𝜉2(𝑖),𝜉3(𝑖)
𝜉4(𝑖)

.

Thus [𝑖, 𝑗) = [𝑚, 𝑑𝑜𝑚(𝜉)), then 𝜉5 ↾ [𝑖, 𝑗) = ℎ−1
𝜂↾𝑚(𝜂 ↾ [𝑚, 𝑑𝑜𝑚(𝜉))) ∈ 𝑍

𝜉2(𝑚),𝜉3(𝑚)
𝜉4(𝑚) .
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Thus 𝜉 satisfies item 9. Since 𝜉 is constant on [𝑚, 𝛾), 𝜉 satisfies 10 (a). Finally
by item 10 (a) when 𝑑𝑜𝑚(𝜁) = 𝛾, 𝑐𝑓 (𝜉) = 𝑐(𝜉5 ↾ [𝑚, 𝛾)), where 𝑐 is the color of

𝑃
𝜉2(𝑚),𝜉3(𝑚)
𝜉4(𝑚) . Since 𝜉5 ↾ [𝑚, 𝛾) = ℎ−1

𝜂↾𝑚(𝜂 ↾ [𝑚, 𝛾)), 𝑐𝑓 (𝜉) = 𝑐(ℎ−1
𝜂↾𝑚(𝜂 ↾ [𝑚, 𝛾))) and

since ℎ is an isomorphism, 𝑐𝑓 (𝜉) = 𝑐𝑊 (𝜂↾𝑚)(𝜂 ↾ [𝑚, 𝛾)) = 𝑐𝑔(𝜂).
Case 𝜂 satisfies (* * *).
Clearly 𝑑𝑜𝑚(𝜂) = 𝛾. By the induction hypothesis and condition d), 𝑟𝑎𝑛𝑔(𝜂) = 𝛾,

otherwise 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1). Let 𝐹−1
𝛼𝑗

(𝜂) = 𝜉 = ∪𝑛<𝛾𝐹
−1
𝛼𝑗−1

(𝜂 ↾ 𝑛), by the induction
hypothesis, 𝜉 is well defined. Since 𝜉 ↾ 𝑛 ∈ 𝐽𝑓 for all 𝑛 < 𝛾, then 𝜉 ∈ 𝐽𝑓 . Let
us check that 𝑐𝑓 (𝜉) = 𝑐𝑔(𝜂). Notice that 𝜉 /∈ 𝐽

𝛼𝑗−1

𝑓 , otherwise by the induction

hypothesis f),

𝐹𝛼𝑗−1
(𝜉) =

⋃︁
𝑛<𝛾

𝐹𝛼𝑗−1
(𝜉 ↾ 𝑛) =

⋃︁
𝑛<𝛾

𝜂 ↾ 𝑛 = 𝜂

giving us 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1
). By Equation (5), 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜉5)) = 𝛼𝑗−1 and 𝜉 satisfies

item 10 b) in 𝐽𝑓 . Therefore 𝑐𝑓 (𝜉) = 𝑓(𝛼𝑗−1). By the definition of 𝐽𝛼
𝑓 and since

𝜉 ↾ 𝑛 ∈ 𝐽
𝛼𝑗−1

𝑓 holds for all 𝑛 < 𝛾, 𝛼𝑗−1 is a limit ordinal. By condition a), 𝑗 − 1 is

a limit ordinal and 𝛼𝑗−1 ∈ 𝐶. The conditions b) and c) ensure that 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗−1) =

𝐽
𝛼𝑗−1

𝑓 . This implies, 𝜂 /∈ 𝐽
𝛼𝑗−1

𝑓 . By the equation (5), 𝑠𝑢𝑝(𝑟𝑎𝑛𝑔(𝜂5)) = 𝛼𝑗−1.

Therefore 𝛼𝑗−1 has cofinality 𝛾, 𝛼𝑗−1 ∈ 𝐶 ′ and 𝑓(𝛼𝑗−1) = 𝑔(𝛼𝑗−1). By item 10 b)
in 𝐽𝑔, 𝑐𝑔(𝜂) = 𝑔(𝛼𝑗−1) = 𝑓(𝛼𝑗−1) = 𝑐𝑓 (𝜉).

Let us show that 𝐹𝛼𝑖 is a color preserving partial isomorphism. We already
showed that 𝐹𝛼𝑖

preserve the colors, so we only need to show that

(6) 𝜂 ⊊ 𝜉 ⇔ 𝐹−1
𝛼𝑖

(𝜂) ⊊ 𝐹−1
𝛼𝑖

(𝜉).

From left to right.
When 𝜂, 𝜉 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1

), the induction hypothesis implies (6) from left to right.
If 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1) and 𝜉 /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1). Then the construction implies (6) from
left to right. If 𝜂, 𝜉 /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1), then 𝜂, 𝜉 satisfy (**). Let 𝑚1 and 𝑚2 be the
ordinals that witness (**) for 𝜂 and 𝜉, respectively. Notice that 𝑚2 < 𝑑𝑜𝑚(𝜂),
otherwise, 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1

). If 𝑚1 < 𝑚2, then 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1
) which is not the

case. A similar argument shows that 𝑚2 < 𝑚1 cannot hold. We conclude that
𝑚1 = 𝑚2. By the construction of 𝐹𝛼𝑖 , we cocnlude that 𝐹−1

𝛼𝑖
(𝜂) ⊊ 𝐹−1

𝛼𝑖
(𝜉).

From right to left.
When 𝜂, 𝜉 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1

), the induction hypothesis implies (6) from right to
left. If 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1

) and 𝜉 /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1
), the construction implies (6) from

right to left. If 𝜂, 𝜉 /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1
), then 𝜂, 𝜉 satisfy (**). Let 𝑚1 and 𝑚2 be the

respective ordinal numbers that witness (**) for 𝜂 and 𝜉, respectively. Notice that
𝑚2 < 𝑑𝑜𝑚(𝜂), otherwise, 𝐹−1

𝛼𝑖
(𝜂) = 𝐹−1

𝛼𝑖−1
(𝜂) and 𝜂 ∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1). Let us denote

by 𝜗 the inverse map 𝐹−1
𝛼𝑖

(e.g. 𝜗(𝜁) = 𝐹−1
𝛼𝑖

(𝜁)), and the first component by 𝜗1
(e.g. 𝜗1(𝜁) = 𝐹−1

𝛼𝑖
(𝜁)1).

If 𝑚1 < 𝑚2 and 𝑚2 is a successor ordinal, then

𝜗1(𝜂)(𝑚2 − 1) = (𝜗(𝜉)↾𝑚2)1(𝑚2 − 1)
< 𝜗1(𝜉↾𝑚2)(𝑚2 − 1) + 1
= 𝜗1(𝜂)(𝑚2)
= 𝜗1(𝜂)(𝑚2 − 1).

If 𝑚1 < 𝑚2 and 𝑚2 is a limit ordinal, then

∀𝜌 ∈ [𝑚1,𝑚2) 𝜗1(𝜂)(𝜌) = (𝜗(𝜉)↾𝑚2
)1(𝜌)

< 𝑠𝑢𝑝𝑛<𝑚2
𝜗1(𝜉↾𝑚2

)(𝑛)
= 𝜗1(𝜂)(𝑚2)
= 𝜗1(𝜂)(𝜌).
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This cannot hold. A similar argument shows that 𝑚2 < 𝑚1 cannot hold. We
conclude that 𝑚1 = 𝑚2.

By the induction hypothesis, 𝐹−1
𝛼𝑖−1

(𝜂↾𝑚1) = 𝐹−1
𝛼𝑖−1

(𝜉↾𝑚2) implies 𝜂↾𝑚1 = 𝜉↾𝑚2

(it also implies ℎ𝜂↾𝑚1
= ℎ𝜉↾𝑚2

). Since 𝐹−1
𝛼𝑖−1

(𝜂↾𝑚1)(𝑛) = 𝐹−1
𝛼𝑖

(𝜂)(𝑛) for all 𝑛 < 𝑚1,

we only need to prove that 𝜂 ↾ [𝑚1, 𝑑𝑜𝑚(𝜂)) ⊊ 𝜉 ↾ [𝑚2, 𝑑𝑜𝑚(𝜉)). But ℎ𝜂↾𝑚1 is an

isomorphism and 𝐹−1
𝛼𝑖

(𝜂)5(𝑛) = 𝐹−1
𝛼𝑖

(𝜉)5(𝑛) holds for every 𝑛 ≥ 𝑚1, so ℎ−1
𝜂↾𝑚1

(𝜂 ↾

[𝑚1, 𝑑𝑜𝑚(𝜂)))(𝑛) = ℎ−1
𝜉↾𝑚2

(𝜉 ↾ [𝑚2, 𝑑𝑜𝑚(𝜉)))(𝑛). Therefore 𝜂 ↾ [𝑚1, 𝑑𝑜𝑚(𝜂)) ⊊ 𝜉 ↾
[𝑚2, 𝑑𝑜𝑚(𝜉)).

Let us check that this three constructions satisfy the conditions a)-f).
When 𝑖 is a successor, we have that 𝛼𝑖−1 < 𝜄 < 𝛼𝑖 = 𝜄 + 1 for some 𝜄 ∈ 𝐶, this

is the condition a). Clearly the three cases satisfy b). We defined 𝐹−1
𝛼𝑖

according

to (*), (**), or (***). Since every 𝜂 ∈ 𝐽
𝛼𝑗
𝑔 satisfies one of these, 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖

) = 𝐽
𝛼𝑗
𝑔

which is the condition c).
Let us show that 𝐹𝛼𝑖

satisfies condition d). Let 𝜉 and 𝜂 be as in the assump-
tions of condition d) for domain. Notice that if 𝜉 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖−1

), then the in-
duction hypothesis ensure that 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖). Suppose 𝜉 /∈ 𝑑𝑜𝑚(𝐹𝛼𝑖−1), then
𝐹𝛼𝑖(𝜉) /∈ 𝑟𝑎𝑛𝑔(𝐹𝛼𝑖−1). Since 𝑑𝑜𝑚(𝜉) < 𝛾, 𝐹𝛼𝑖(𝜉) satisfies (**). Let 𝑚 be the
number witnessing it. If 𝑚 is a limit ordinal, then 𝑑𝑜𝑚(𝜉) ≥ 𝑚 + 1. Therefore
𝜉 ↾𝑚+ 1 ∈ 𝐽𝛼𝑖

𝑓 and by Fact 3.9, 𝜂 ∈ 𝐽𝛼𝑖

𝑓 . If 𝑚 is a successor ordinal, then 𝜉 ∈ 𝐽𝛼𝑖

𝑓

and by Fact 3.9, 𝜂 ∈ 𝐽𝛼𝑖

𝑓 . By item 8 in 𝐽𝛼𝑖

𝑓 , 𝜂𝑘 is constant on [𝑚, 𝑑𝑜𝑚(𝜂)) for

𝑘 ∈ {2, 3, 4}. By Definition 3.3 item 9 in 𝐽𝛼𝑖

𝑓 , 𝜂5 ↾ [𝑚, 𝑑𝑜𝑚(𝜂)) ∈ 𝑍𝛼,𝜄
𝜌𝜉↾𝑚

. Let

𝜁 = ℎ𝜉↾𝑚(𝜂[𝑚,𝑑𝑜𝑚(𝜂))), then 𝜂 = 𝐹−1
𝛼𝑖

(𝐹𝛼𝑖
(𝜉 ↾𝑚)⌢𝜁) and 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖

).
Using the same argument, the condition d) can be proved.
For the conditions e) and f), notice that 𝜉 was constructed such that 𝑑𝑜𝑚(𝜉) =

𝑑𝑜𝑚(𝜂) and 𝜉 ↾ 𝑘 ∈ 𝑑𝑜𝑚(𝐹𝛼𝑖
), which are these conditions.

Even successor step.
The construction of 𝐹𝛼𝑗 such that 𝑑𝑜𝑚(𝐹𝛼𝑗 ) = 𝐽𝛼𝑖

𝑓 follows as in the odd successor
step, with the equivalent definitions.

Limit step.
Assume 𝑗 is a limit ordinal. Let 𝛼𝑗 = ∪𝑖<𝑗𝛼𝑖 and 𝐹𝛼𝑗

= ∪𝑖<𝑗𝐹𝛼𝑖
. Clearly

𝐹𝛼𝑗 : 𝐽
𝛼𝑗

𝑓 → 𝐽𝑔 and satisfies condition c). Since for 𝑖 successor, 𝛼𝑖 is the successor

of an ordinal in 𝐶, then 𝛼𝑗 ∈ 𝐶 and satisfies condition a). Also 𝐹𝛼𝑗
is a partial

isomorphism. Recall that ∪𝑖<𝑗𝐽
𝛼𝑖

𝑓 = 𝐽
𝛼𝑗

𝑓 , equivalent for 𝐽𝑔. By the induction

hypothesis and conditions b) and c) for 𝑖 < 𝑗, we have 𝑑𝑜𝑚(𝐹𝛼𝑗
) = 𝐽

𝛼𝑗

𝑓 (this is the

condition b)) and 𝑟𝑎𝑛𝑔(𝐹𝛼𝑗
) = 𝐽

𝛼𝑗
𝑔 . This and Fact 3.9 ensure that condition d) is

satisfied. By the induction hypothesis, for every 𝑖 < 𝑗, 𝐹𝛼𝑖
satisfies conditions e)

and f). Thus 𝐹𝛼𝑗
satisfies conditions e) and f).

Define 𝐹 = ∪𝑖<𝜅𝐹𝛼𝑖 , clearly, it is an isomorphism between 𝐽𝑓 and 𝐽𝑔.
□

3.4. Ordered trees. By applying similar ideas to the ones used by Abraham in
[1], it was possible to construct highly saturated ordered coloured trees in [37].
Following the construction presented in [37], we will use the 𝜅-colorable linear
order 𝐼 to construct ordered trees with 𝛾 + 1 levels, 𝐴𝑓 , for every 𝑓 ∈ 𝛽𝜅 with the
property 𝐴𝑓 ∼= 𝐴𝑔 if and only if 𝑓 =𝛽

𝛾 𝑔.

Definition 3.11. Let 𝐾𝛾
𝑡𝑟 be the class of models (𝐴,≺, (𝑃𝑛)𝑛≤𝛾 , <,∧), where:

(1) There is a linear order (ℐ, <ℐ) such that 𝐴 ⊆ ℐ≤𝛾 .
(2) 𝐴 is closed under initial segment.
(3) ≺ is the initial segment relation.
(4) ∧(𝜂, 𝜉) is the maximal common initial segment of 𝜂 and 𝜉.
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(5) Let 𝑙𝑔(𝜂) be the length of 𝜂 (i.e. the domain of 𝜂) and 𝑃𝑛 = {𝜂 ∈ 𝐴 |
𝑙𝑔(𝜂) = 𝑛} for 𝑛 ≤ 𝛾.

(6) For every 𝜂 ∈ 𝐴 with 𝑙𝑔(𝜂) < 𝛾, define 𝑆𝑢𝑐𝐴(𝜂) as {𝜉 ∈ 𝐴 | 𝜂 ≺ 𝜉 & 𝑙𝑔(𝜉) =
𝑙𝑔(𝜂) + 1}. < is

⋃︀
𝜂∈𝐴(< ↾𝑆𝑢𝑐𝐴(𝜂)), i.e. if 𝜉 < 𝜁, then there is 𝜂 ∈ 𝐴 such

that 𝜉, 𝜁 ∈ 𝑆𝑢𝑐𝐴(𝜂).
(7) For all 𝜂 ∈ 𝐴∖𝑃𝛾 , < ↾𝑆𝑢𝑐𝐴(𝜂) is the induced linear order from ℐ, i.e.

𝜂⌢⟨𝑥⟩ < 𝜂⌢⟨𝑦⟩ ⇔ 𝑥 <ℐ 𝑦.

(8) If 𝜂 and 𝜉 have no immediate predecessor and {𝜁 ∈ 𝐴 | 𝜁 ≺ 𝜂} = {𝜁 ∈ 𝐴 |
𝜁 ≺ 𝜉}, then 𝜂 = 𝜉.

The elements of 𝐾𝛾
𝑡𝑟 are called ordered trees. For each 𝑓 ∈ 𝛽𝜅 we will use

the coloured trees 𝐽𝑓 to construct new coloured trees that will be ordered later.
An ordered coloured tree is a model (𝐴,≺, (𝑃𝑛)𝑛≤𝛾 , <,∧, 𝑐) where (𝐴,≺) is a tree,
(𝐴,≺, (𝑃𝑛)𝑛≤𝛾 , <,∧) is an ordered tree, and (𝐴,≺, 𝑐) is a coloured tree.

For every 𝑓 ∈ 𝛽𝜅, we have constructed the coloured tree 𝐽𝑓 and the filtration
(𝐽𝛼

𝑓 )𝛼<𝜅. Notice that 𝐽0
𝑓 = {∅} and 𝑑𝑜𝑚(∅) = 0. Let us denote by acc(𝜅) =

{𝛼 < 𝜅 | 𝛼 = 0 or 𝛼 is a limit ordinal}. For all 𝛼 ∈ acc(𝜅) and 𝜂 ∈ 𝐽𝛼
𝑓 with

𝑑𝑜𝑚(𝜂) = 𝑚 < 𝛾 define

𝑊𝛼
𝜂 = {𝜁 | 𝑑𝑜𝑚(𝜁) = [𝑚, 𝑠),𝑚 ≤ 𝑠 ≤ 𝛾, 𝜂⌢𝜁 ∈ 𝐽𝛼+𝜔

𝑓 , 𝜂⌢⟨𝑚, 𝜁(𝑚)⟩ /∈ 𝐽𝛼
𝑓 }.

Notice that by the way 𝐽𝑓 was constructed, for every 𝜂 ∈ 𝐽𝑓 with domain smaller
than 𝛾 and 𝛼 < 𝜅, the set

{(𝜗1, 𝜗2, 𝜗3, 𝜗4, 𝜗5) ∈ (𝛾 × 𝜅4)∖(𝛾 × 𝛼4) | 𝜂⌢(𝜗1, 𝜗2, 𝜗3, 𝜗4, 𝜗5) ∈ 𝐽𝛼+𝜔
𝑓 }

is either empty or has size 𝜔. Let 𝜎𝛼
𝜂 be an enumeration of this set, when this set

is not empty.
Let us denote by 𝒯 = (𝜅× 𝜔 × acc(𝜅) × 𝛾 × 𝜅× 𝜅× 𝜅× 𝜅)≤𝛾 . For every 𝜉 ∈ 𝒯

there are functions {𝜉𝑖 ∈ 𝜅≤𝜔 | 0 < 𝑖 ≤ 8} such that for all 𝑖 ≤ 8, 𝑑𝑜𝑚(𝜉𝑖) = 𝑑𝑜𝑚(𝜉)
and for all 𝑛 ∈ 𝑑𝑜𝑚(𝜉), 𝜉(𝑛) = (𝜉1(𝑛), 𝜉2(𝑛), 𝜉3(𝑛), 𝜉4(𝑛), 𝜉5(𝑛), 𝜉6(𝑛), 𝜉7(𝑛), 𝜉8(𝑛)).
For every 𝜉 ∈ 𝒯 let us denote (𝜉4, 𝜉5, 𝜉6, 𝜉7, 𝜉8) by 𝜉.

Definition 3.12. For all 𝛼 ∈ acc(𝜅) and 𝜂 ∈ 𝒯 with 𝜂 ∈ 𝐽𝑓 , 𝑑𝑜𝑚(𝜂) = 𝑚 < 𝛾
define Γ𝛼

𝜂 as follows:
If 𝜂 ∈ 𝐽𝛼

𝑓 , then Γ𝛼
𝜂 is the set of elements 𝜉 of 𝒯 such that:

(1) 𝜉 ↾𝑚 = 𝜂,
(2) 𝜉 ↾ 𝑑𝑜𝑚(𝜉)∖𝑚 ∈𝑊𝛼

𝜂 ,
(3) 𝜉3 is constant on 𝑑𝑜𝑚(𝜉)∖𝑚,
(4) 𝜉3(𝑚) = 𝛼,
(5) for all 𝑛 ∈ 𝑑𝑜𝑚(𝜉)∖𝑚, let 𝜉2(𝑛) be the unique 𝑟 < 𝜔 such that 𝜎𝛼

𝜁 (𝑟) = 𝜉(𝑛),

where 𝜁 = 𝜉 ↾ 𝑛.

If 𝜂 /∈ 𝐽𝛼
𝑓 , then Γ𝛼

𝜂 = ∅.

For 𝜂 ∈ 𝒯 with 𝜂 ∈ 𝐽𝑓 , 𝑑𝑜𝑚(𝜂) = 𝑚 < 𝛾 define

Γ(𝜂) =
⋃︁

𝛼∈acc(𝜅)

Γ𝛼
𝜂 .

Finally we can define 𝐴𝑓 by induction. Let 𝑇𝑓 (0) = {∅} and for all 𝑛 < 𝛾,

𝑇𝑓 (𝑛+ 1) = 𝑇𝑓 (𝑛) ∪
⋃︁

𝜂∈𝑇𝑓 (𝑛) 𝑑𝑜𝑚(𝜂)=𝑛

Γ(𝜂).

For 𝑛 ≤ 𝛾 a limit ordinal,

𝑇𝑓 (𝑛) =
⋃︁

𝑚<𝑛

𝑇𝑓 (𝑚)
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and

𝑇𝑓 (𝑛) = 𝑇𝑓 (𝑛) ∪ {𝜂 ∈ 𝒯 | 𝑑𝑜𝑚(𝜂) = 𝑛 & ∀𝑚 < 𝑛 (𝜂 ↾𝑚 ∈ 𝑇𝑓 (𝑛))}.
For 0 < 𝑖 ≤ 8 let us denote by 𝑠𝑖(𝜂) = 𝑠𝑢𝑝{𝜂𝑖(𝑛) | 𝑛 < 𝛾} and 𝑠𝛾(𝜂) =

𝑚𝑎𝑥{𝑠𝑖(𝜂) | 𝑖 ≤ 8}. Finally

𝐴𝑓 = 𝑇𝑓 (𝛾).

Define the color function 𝑑𝑓 by

𝑑𝑓 (𝜂) =

{︃
𝑐𝑓 (𝜂) if 𝑠1(𝜂) < 𝑠𝛾(𝜂)

𝑓(𝑠1(𝜂)) if 𝑠1(𝜂) = 𝑠𝛾(𝜂).

It is clear that 𝐴𝑓 is closed under initial segments, indeed the relations ≺, (𝑃𝑛)𝑛≤𝛾 ,
and ∧ of Definition 3.11 have a canonical interpretation in 𝐴𝑓 .

Now we finish the construction of 𝐴𝑓 by using the 𝜅-colorable linear order 𝐼 of
Section 2. We have to define < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) for all 𝜂 ∈ 𝐴𝑓 with domain smaller than
𝛾. Properly speaking, 𝐴𝑓 will not be an ordered coloured tree as in Definition 3.11,
but it will be isomorphic to an ordered coloured tree as in Definition 3.11.

Let us proceed to define < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂). Let 𝐹 : 𝐼 → 𝜅 be a 𝜅-color function of 𝐼.
For any 𝜂 ∈ 𝐴𝑓 with domain 𝑚 < 𝛾, we will define the order < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) such

that it is isomorphic to 𝐼 and satisfies the following:
(*) Let 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂3)) = 𝜗. For any set 𝐵 ⊂ 𝑆𝑢𝑐𝐴𝑓 (𝜂) of size less than 𝜅, 𝑝(𝑥) a

type of basic formulas over 𝐵 in the variable 𝑥, and any tuple (𝜗2, 𝜗3) ∈ 𝜔× acc(𝜅)
with 𝜗3 ≥ 𝜗, if 𝑝(𝑥) is realized in 𝑆𝑢𝑐𝐴𝑓 (𝜂), then there are 𝜅 many 𝛼 < 𝜅 such that

𝜂⌢(𝛼, 𝜗2, 𝜗3, 𝜎
𝜗3

𝜂 (𝜗2)) |= 𝑝.

By the construction of 𝐴𝑓 , an isomorphism between {(𝜗1, 𝜗2, 𝜗3) ∈ 𝜅 × 𝜔 ×
acc(𝜅) | 𝜗3 ≥ 𝜗} and 𝐼, induces an order in 𝑆𝑢𝑐𝐴𝑓 (𝜂).

Definition 3.13. Let 𝐹 be a 𝜅-color function of 𝐼 (see Theorem 2.11). For all

𝜗, 𝛼 < 𝜅, let us fix a bijections �̃�𝜗 : {(𝜗2, 𝜗3) ∈ 𝜔 × acc(𝜅) | 𝜗3 ≥ 𝜗} → 𝜅 and

�̃�𝛼 : 𝐹−1[𝛼] → 𝜅. Notice that these functions exist because 𝐹 is a 𝜅-color function
of 𝐼 and there are 𝜅 tuples (𝜗2, 𝜗3)of this form.

Let us define 𝒢𝜗 : {(𝜗1, 𝜗2, 𝜗3) ∈ 𝜅× 𝜔 × acc(𝜅) | 𝜗3 ≥ 𝜗} → 𝐼, by:

𝒢𝜗((𝜗1, 𝜗2, 𝜗3)) = 𝑎,

where 𝑎 and 𝛼 are the unique elements that satisfy:

∙ �̃�𝜃((𝜗2, 𝜗3)) = 𝛼;

∙ �̃�𝛼(𝑎) = 𝜗1.

For any 𝜂 ∈ 𝐴𝑓 with 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂3)) = 𝜗, the isomorphism 𝒢𝜗 and 𝐼 induce an

order in 𝑆𝑢𝑐𝐴𝑓 (𝜂). Let us define < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) as the induced order given by 𝒢𝜗

and 𝐼.

Fact 3.14. Suppose 𝜂 ∈ 𝐴𝑓 with 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂3)) = 𝜗. Then < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) satisfies
(*).

Proof. Let 𝑏 ∈ 𝑆𝑢𝑐𝐴𝑓 (𝜂), (𝜗2, 𝜗3) ∈ 𝜔×acc(𝜅) such that 𝜗3 ≥ 𝜗, and 𝐵 ⊆ 𝑆𝑢𝑐𝐴𝑓 (𝜂)
have size less than 𝜅. Let 𝑏(𝑑𝑜𝑚(𝜂)) = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8) and denote by
𝑝𝑟123(𝐵(𝑑𝑜𝑚(𝜂))) the set

{(𝑎1, 𝑎2, 𝑎3) ∈ 𝜅× 𝜔 × acc(𝜅) | ∃𝜉 ∈ 𝐵 (𝜉(𝑑𝑜𝑚(𝜂)) = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8))}.
Let us denote by 𝑞 the type

𝑡𝑝𝑏𝑠(𝒢𝜗(𝑏1, 𝑏2, 𝑏3),𝒢𝜗(𝑝𝑟123(𝐵(𝑑𝑜𝑚(𝜂)))), 𝐼).

By the construction of �̃�𝜗 and since 𝐹 is a 𝜅-color function of 𝐼,

|{𝑎 ∈ 𝐼 | 𝑎 |= 𝑞 & 𝐹 (𝑎) = �̃�𝜗(𝜗2, 𝜗3)}| = 𝜅.
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Therefore for all 𝑎 such that 𝑎 |= 𝑞 and 𝐹 (𝑎) = �̃�𝜗(𝜗2, 𝜗3),

𝜂⌢(�̃��̃�𝜗((𝜗2,𝜗3))
(𝑎), 𝜗2, 𝜗3, 𝜎

𝜗3

𝜂 (𝜗2)) |= 𝑝

□

It is clear that (𝐴𝑓 ,≺, (𝑃𝑛)𝑛≤𝛾 , <,∧) is isomorphic to a subtree of 𝐼≤𝛾 in the
sense of Definition 3.11.

Remark 3.15. Notice that for any 𝜂 ∈ 𝐴𝑓 , < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) is isomorphic to 𝐼. There-
fore for any 𝜁, 𝜂 ∈ 𝐴𝑓 , < ↾𝑆𝑢𝑐𝐴𝑓 (𝜁) and < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) are isomorphic. Even more,
the construction of < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) only depends on 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂3)) = 𝜗.

Theorem 3.16. Suppose 𝛾 < 𝜅 is such that for all 𝜖 < 𝜅, 𝜖𝛾 < 𝜅. For all 𝑓, 𝑔 ∈ 𝛽𝜅,
𝑓 =𝛽

𝛾 𝑔 if and only if 𝐴𝑓 ∼= 𝐴𝑔 (as ordered coloured trees).

Proof. For every 𝑓 ∈ 𝛽𝜅 let us define the 𝜅-representation A𝑓 = ⟨𝐴𝑓
𝛼 | 𝛼 < 𝜅⟩ of

𝐴𝑓 ,
𝐴𝑓

𝛼 = {𝜂 ∈ 𝐴𝑓 | 𝑟𝑛𝑔(𝜂) ⊆ 𝜗× 𝜔 × 𝜗× 𝛾 × 𝜗4 for some 𝜗 < 𝛼}.
Let 𝑓 and 𝑔 be such that 𝑓 =𝛽

𝛾 𝑔, there is 𝐺 a coloured trees isomorphism
between 𝐽𝑓 and 𝐽𝑔. Let 𝐶 ⊆ 𝜅 be a club such that {𝛼 ∈ 𝐶 | 𝑐𝑓(𝛼) = 𝛾} ⊆ {𝛼 < 𝜅 |
𝑓(𝛼) = 𝑔(𝛼)}. We will show that there are sequences {𝛼𝑖}𝑖<𝜅 and {𝐹𝑖}𝑖<𝜅 with
the following properties:

∙ {𝛼𝑖}𝑖<𝜅 is a club.
∙ If 𝑖 is a successor, then there is 𝜗 ∈ 𝐶 such that 𝛼𝑖−1 < 𝜗 < 𝛼𝑖.
∙ Suppose 𝑖 = 𝜄+ 𝑛, where 𝜄 is limit or 0 and 𝑛 is odd. Then 𝐹𝑖 is a partial

isomorphism between 𝐴𝑓 and 𝐴𝑔, and 𝐴𝑓
𝛼𝑖

⊆ 𝑑𝑜𝑚(𝐹𝑖).
∙ Suppose 𝑖 = 𝜄+ 𝑛, where 𝜄 is limit or 0 and 𝑛 is even. Then 𝐹𝑖 is a partial

isomorphism between 𝐴𝑓 and 𝐴𝑔, and 𝐴𝑔
𝛼𝑖

⊆ 𝑟𝑛𝑔(𝐹𝑖).

∙ If 𝑖 is limit, then 𝐹𝑖 : 𝐴𝑓
𝛼𝑖

→ 𝐴𝑔
𝛼𝑖

.
∙ If 𝑖 < 𝑗, then 𝐹𝑖 ⊆ 𝐹𝑗 .

∙ For all 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝑖), 𝐺(𝜂) = 𝐹𝑖(𝜂).

We will proceed by induction over 𝑖.
Case 𝑖 = 0. Let 𝛼0 = 0 and 𝐹0(∅) = ∅.
Case 𝑖 is successor. Suppose 𝑖 = 𝜄 + 𝑛, with 𝜄 limit or 0 and 𝑛 even, is such

that:

∙ 𝐹𝑖 is a partial isomorphism.
∙ 𝐴𝑔

𝛼𝑖
⊆ 𝑟𝑛𝑔(𝐹𝑖).

∙ For all 𝑗 < 𝑖, 𝐹𝑗 ⊆ 𝐹𝑖.

∙ For all 𝜂 ∈ 𝑑𝑜𝑚(𝐹𝑖), 𝐺(𝜂) = 𝐹𝑖(𝜂).

Let us choose 𝛼𝑖+1 to be a successor ordinal such that 𝛼𝑖 < 𝜗 < 𝛼𝑖+1 holds for
some 𝜗 ∈ 𝐶 and enumerate 𝐴𝑓

𝛼𝑖
by {𝜂𝑗 | 𝑗 < Ω} for some Ω < 𝜅. Denote by 𝐵𝑗 the

set {𝑥 ∈ 𝐴𝑓
𝛼𝑖+1

∖𝑑𝑜𝑚(𝐹𝑖) | 𝜂𝑗 ≺ 𝑥}.

By the induction hypothesis, we know that for all 𝑗 < Ω, 𝑥 ∈ 𝐵𝑗 , 𝐹𝑖(𝜂𝑗) ≺ 𝐺(𝑥).
By Remark 3.15, for all 𝜂 ∈ 𝐴𝑓 and 𝜉 ∈ 𝐴𝑔, < ↾𝑆𝑢𝑐𝐴𝑓 (𝜂) and < ↾𝑆𝑢𝑐𝐴𝑔 (𝜉)
are isomorphic. Thus, since |𝐴𝑓

𝛼𝑖
|, |𝐵0| < 𝜅, by (*) there is an embedding 𝐹 0

𝑖

from (𝐴𝑓
𝛼𝑖

∪ 𝐵0,≺, <) to (𝐴𝑔,≺, <) that extends 𝐹𝑖 and for all 𝜂 ∈ 𝑑𝑜𝑚(𝐹 0
𝑖 ),

𝐹 0
𝑖 (𝜂) = 𝐺(𝜂).

Suppose that 0 < 𝑡 < Ω is such that the following hold:

∙ There is a sequence of embeddings {𝐹 𝑗
𝑖 | 𝑗 < 𝑡}, where 𝐹 𝑗

𝑖 is an embedding
from (𝐴𝑓

𝛼𝑖
∪
⋃︀

𝑙≤𝑗 𝐵𝑙,≺, <) into 𝐴𝑔.

∙ 𝐹 𝑙
𝑖 ⊆ 𝐹 𝑗

𝑖 holds for all 𝑙 < 𝑗 < 𝑡.

∙ For all 𝜂 ∈ 𝑑𝑜𝑚(𝐹 𝑗
𝑖 ), 𝐹 𝑗

𝑖 (𝜂) = 𝐺(𝜂).
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Since |𝐴𝑓
𝛼𝑖

∪
⋃︀

𝑗<𝑡𝐵𝑗 |, |𝐵𝑡| < 𝜅, by (*) there is an embedding 𝐹 𝑡
𝑖 from (𝐴𝑓

𝛼𝑖
∪⋃︀

𝑗≤𝑡𝐵𝑗 ,≺, <) to (𝐴𝑔,≺, <) that extends
⋃︀

𝑗<𝑡 𝐹
𝑗
𝑖 and for all 𝜂 ∈ 𝑑𝑜𝑚(𝐹 𝑡

𝑖 ), 𝐹 𝑡
𝑖 (𝜂) =

𝐺(𝜂).

Finally 𝐹𝑖+1 =
⋃︀

𝑗<Ω 𝐹
𝑗
𝑖 is as wanted.

The case 𝑖 = 𝜄+𝑛 with 𝑛 odd is similar. For 𝑖 limit, we define 𝛼𝑖 =
⋃︀

𝑗<𝑖 𝛼𝑗 and

𝐹𝛼𝑖
=

⋃︀
𝑗<𝑖 𝐹𝑗 .

It is clear that 𝐹 =
⋃︀

𝑗<𝜅 𝐹𝑗 witnesses that 𝐴𝑓 and 𝐴𝑔 are isomorphic as ordered

trees. Let us show that 𝑑𝑓 (𝜂) = 𝑑𝑔(𝐹 (𝜂)), suppose 𝜂 ∈ 𝐴𝑓 is a leaf. Let 𝑙 be the
least ordinal such that 𝜂 ∈ 𝐴𝑓

𝛼𝑙
. If there is 𝑛 < 𝛾 such that for all 𝑗 < 𝑙, 𝜂 ↾𝑛 /∈ 𝐴𝑓

𝛼𝑗
,

then by the way 𝐹 was constructed, 𝑑𝑓 (𝜂) = 𝑑𝑔(𝐹 (𝜂)). On the other hand, if for
all 𝑛 < 𝛾 there is 𝑗 < 𝑙 such that 𝜂 ↾ 𝑛 ∈ 𝐴𝑓

𝛼𝑗
, then there is an 𝛾-cofinal ordinal 𝑖

such that 𝑠𝛾(𝜂) = 𝛼𝑖 and 𝑖+ 1 = 𝑙. By the construction of 𝐴𝑓 we know that

𝑑𝑓 (𝜂) =

{︃
𝑐𝑓 (𝜂) if 𝑠1(𝜂) < 𝑠𝛾(𝜂)

𝑓(𝑠1(𝜂)) if 𝑠1(𝜂) = 𝑠𝛾(𝜂).

Since 𝑠𝛾(𝜂) = 𝛼𝑖, either 𝑑𝑓 (𝜂) = 𝑓(𝑠1(𝜂)) (if 𝑠1(𝜂) = 𝛼𝑖) or 𝑑𝑓 (𝜂) = 𝑐𝑓 (𝜂) (if
𝑠1(𝜂) < 𝛼𝑖).

Therefore, if 𝑠1(𝜂) = 𝛼𝑖, then 𝑑𝑓 (𝜂) = 𝑓(𝛼𝑖).
Let us calculate 𝑑𝑓 (𝜂), when 𝑠1(𝜂) < 𝑠𝛾(𝜂). By Fact 3.6,

𝑠7(𝜂) ≤ 𝑠5(𝜂) = 𝑠6(𝜂) = 𝑠8(𝜂) = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂8).

It is easy to see that 𝑠2(𝜂), 𝑠3(𝜂), 𝑠4(𝜂) ≤ 𝑠5(𝜂).
We conclude that 𝑠𝛾(𝜂) = 𝑠8(𝜂) = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂8)) and 𝛼𝑖 = 𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂8)). From

Definition 3.3 (8),

𝑐𝑓 (𝜂) = 𝑓(𝑠𝑢𝑝(𝑟𝑛𝑔(𝜂8))) = 𝑓(𝛼𝑖).

Therefore 𝑑𝑓 (𝜂) = 𝑓(𝛼𝑖) in both cases (𝑠1(𝜂) = 𝑠𝛾(𝜂) and 𝑠1(𝜂) < 𝑠𝛾(𝜂)). By
the same argument and using the definition of 𝐹 , we can conclude that 𝑑𝑔(𝐹 (𝜂)) =
𝑔(𝛼𝑖). Finally since 𝑖 is a limit ordinal with cofinality 𝛾, 𝛼𝑖 is an 𝛾-limit of 𝐶. Thus
𝑑𝑓 (𝜂) = 𝑓(𝛼𝑖) = 𝑔(𝛼𝑖) = 𝑑𝑔(𝐹 (𝜂)) and 𝐹 is a coloured tree isomorphism.

Now let us prove that if 𝐴𝑓 and 𝐴𝑔 are isomorphic ordered coloured trees, then
𝑓 =𝛽

𝛾 𝑔.
Let us start by defining the following function 𝐻𝑓 ∈ 𝛽𝜅. For every 𝛼 ∈ 𝜅 with

cofinality 𝛾, define 𝐵𝛼 = {𝜂 ∈ 𝐴𝑓∖𝐴𝑓
𝛼 | 𝑑𝑜𝑚(𝜂) = 𝛾 & ∀𝑛 < 𝛾 (𝜂 ↾𝑛 ∈ 𝐴𝑓

𝛼)}. Notice
that by the construction of 𝐴𝑓 and the definition of 𝐴𝑓

𝛼, for all 𝜂 ∈ 𝐵𝛼 we have
𝑑𝑓 (𝜂) = 𝑓(𝑠𝛾) = 𝑓(𝛼). Therefore, the value of 𝑓(𝛼) can be obtained from 𝐵𝛼 and
𝑑𝑓 , and we can define the function 𝐻𝑓 ∈ 𝛽𝜅 as :

𝐻𝑓 (𝛼) =

{︃
𝑓(𝛼) if 𝑐𝑓(𝛼) = 𝛾

0 otherwise.

This function can be obtained from the 𝜅-representation {𝐴𝑓
𝛼}𝛼<𝜅 and 𝑑𝑓 . It is

clear that 𝑓 =𝛽
𝛾 𝐻𝑓 .

Claim 3.16.1. If 𝐴𝑓 and 𝐴𝑔 are isomorphic ordered coloured trees, then 𝐻𝑓 =𝛽
𝛾 𝐻𝑔.

Proof. Let 𝐹 be an ordered coloured tree isomorphism. It is easy to see that
{𝐹 [𝐴𝑓

𝛼]}𝛼<𝜅 is a 𝜅-representation. Define 𝐶 = {𝛼 < 𝜅 | 𝐹 [𝐴𝑓
𝛼] = 𝐴𝑔

𝛼}. Since 𝐹 is
an isomorphism, for all 𝛼 ∈ 𝐶, 𝐻𝑓 (𝛼) = 𝐻𝑔(𝛼). Therefore it is enough to show
that 𝐶 is a 𝛾-club. By the definition of 𝜅-representation, if (𝛼𝑛)𝑛<𝛾 is a sequence

of elements of 𝐶 cofinal to some 𝜗, then 𝐴𝑔
𝜗 =

⋃︀
𝑛<𝛾 𝐴

𝑔
𝛼𝑛

=
⋃︀

𝑛<𝛾 𝐹 [𝐴𝑓
𝛼𝑛

] = 𝐹 [𝐴𝑓
𝜗].

We conclude that 𝐶 is 𝛾-closed.
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Let us finish by showing that 𝐶 is unbounded. Fix an ordinal 𝛼 < 𝜅, let us
construct a sequence (𝛼𝑛)𝑛≤𝜔 such that 𝛼𝜔 ∈ 𝐶 and 𝛼𝜔 > 𝛼. Define 𝛼0 = 𝛼. For
every odd 𝑛, define 𝛼𝑛+1 to be the least ordinal bigger than 𝛼𝑛 such that 𝐹 [𝐴𝑓

𝛼𝑛
] ⊆

𝐴𝑔
𝛼+1. For every even 𝑛, define 𝛼𝑛+1 to be the least ordinal bigger than 𝛼𝑛 such

that 𝐴𝑔
𝛼𝑛

⊆ 𝐹 [𝐴𝑓
𝛼+1]. Define 𝛼𝜔 =

⋃︀
𝑛<𝜔 𝛼𝑛. Clearly

⋃︀
𝑖<𝜔 𝐹 [𝐴𝑓

𝛼2𝑖
] =

⋃︀
𝑖<𝜔 𝐴

𝑔
𝛼2𝑖+1

.
We conclude that 𝛼𝜔 ∈ 𝐶 □

□

Remark 3.17. Same as in the construction of the coloured trees 𝐽𝑓 , the function𝑓 ∈
𝛽𝜅 is only used to define the color function in the construction of 𝐴𝑓 . So if 𝑓, 𝑔 ∈ 𝛽𝜅

and 𝛼 are such that 𝑓 ↾ 𝛼 = 𝑔 ↾ 𝛼, then 𝐽𝛼
𝑓 = 𝐽𝛼

𝑔 . As a consequence 𝑓 ↾ 𝛼 = 𝑔 ↾ 𝛼
implies that 𝐴𝑓

𝛼 = 𝐴𝑔
𝛼.

Notice that the only property we used from 𝐼 to construct the ordered coloured
trees was that it is 𝜅-colorable. Therefore the construction can be done with any
𝜅-colorable linear order. We will need the other properties of 𝐼 in the next section,
when we construct the Ehrenfeucht-Mostowski models.

4. Ehrenfeucht-Mostowski models

4.1. Index models. We will use ordered coloured trees to construct the models of
non-classifiable theories, we will construct Ehrenfeucht-Mostowski models (see [5]).
These models require an skeleton for the construction.

Notation. We will use all the objects we have studied so far in the previous
sections. Let us recall some notation, before we do the construction of the models.

∙ 𝜅 is an uncountable regular cardinal that satisfies 𝜅<𝜅 = 𝜅.
∙ 𝜅 is either an inaccessible cardinal or a successor cardinal. If 𝜅 is a successor

cardinal, then 𝜆 is the cardinal such that 2𝜆 = 𝜆+ = 𝜅.
∙ 𝜀 < 𝜅 is the cardinal associated to the density, i.e. 𝜀-dense linear orders.
∙ 𝜃 < 𝜅 is a cardinal such that there is a model of 𝐷𝐿𝑂 of size 𝜃, that is
𝜀-dense. For simplicity, let 𝜃 be the least cardinal with such property.

∙ 𝛾 < 𝜅 is the height of the ordered coloured trees.
∙ 𝛽 ≤ 𝜅 is the amount of colors of the ordered coloured trees.
∙ 𝒬 is a model of DLO with cardinality 𝜃 that is 𝜀-dense.
∙ 𝐼 is the linear order constructed in Section 2.

Assumptions. To use the results of the the previous sections, we will need to
make some cardinal assumptions.

∙ If 𝜅 = 𝜆+, then 2𝜃 ≤ 𝜆 = 𝜆<𝜀.
∙ 𝜀 is regular.
∙ 𝛾 is regular and satisfies ∀𝛼 < 𝜅, 𝛼𝛾 < 𝜅.
∙ 𝜀 ≤ 𝛾.
∙ 𝛽 = 2.

In this section we will construct a model ℳ𝑓 for each 𝑓 ∈ 2𝜅, and study the
isomorphism between these models. The following is the main result of this section.

Theorem 4.1. Let 𝑇 be a non-classifiable theory. For any function 𝑓 ∈ 2𝜅, we can
construct a model ℳ𝑓 , such that for any 𝑓, 𝑔 ∈ 2𝜅, there is 𝜀 ≤ 𝛾 < 𝜅 (satisfying
the previous assumptions)

𝑓 =2
𝛾 𝑔 iff ℳ𝑓 ∼= ℳ𝑔.

It is clear that the construction of the models depends on which kind of non-
classifiable theory we are dealing with (e.g. unstable or superstable with the
OTOP). In particular, each case requires a different values for 𝜀 and 𝛾.
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For the constructions we will use different kinds of Ehrenfeucht-Mostowski mod-
els. The sets of indiscernibles (below) will allow us to use the types over trees to
study the types over models.

Definition 4.2. Let ∆ be a set of formulas. Let 𝐴 and ℳ be models, and 𝑋 = {�̄�𝑠 |
𝑠 ∈ 𝐴} an indexed set of finite tuples of elements of ℳ. We say that 𝑋 is a set of
indiscernibles in ℳ relative to ∆, if the following holds:

If 𝑠, 𝑠′ are 𝑛-tuples of elements of 𝐴 and 𝑡𝑝𝑎𝑡(𝑠, ∅, 𝐴) = 𝑡𝑝𝑎𝑡(𝑠
′, ∅, 𝐴), then

𝑡𝑝Δ(�̄�𝑠, ∅,ℳ) = 𝑡𝑝Δ(�̄�𝑠′ , ∅,ℳ).

Here and from now on, 𝑠 = (𝑠0, . . . , 𝑠𝑛) is a tuple of elements of 𝐴, and �̄�𝑠 denotes
�̄�⌢𝑠0 · · ·

⌢ �̄�𝑠𝑛 .

Notice that there are no restrictions over ∆. The existence of a model with a
set of indiscernibles relative to an infinitary logic has been studied by Eklof in [6]
and Makkai in [31]. The use of infinitary logics will be useful when we construct
the models, for some theories we will deal with linear orders definable by a formula
in an infinitary logic (Fact 4.11 and Fact 4.18).

Definition 4.3 (Ehrenfeucht-Mostowski models). Let 𝑇 be a 𝐿𝜔𝜔-theory of vocab-
ulary 𝜏 , 𝑙 a dense linear order, ℳ a model of vocabulary 𝜏1, and 𝜙(�̄�, 𝑣) a formula
in some logic ℒ.

We say that ℳ is an Ehrenfeucht-Mostowski model of 𝑇 for 𝑙, where the order
is definable by 𝜙, if ℳ |= 𝑇 , 𝜏 ⊆ 𝜏1, and there is a natural number 𝑛 and 𝑛-tuples
of elements �̄�𝑥 ∈ ℳ, 𝑥 ∈ 𝑙, such that the following hold:

(1) Every element of ℳ is of the form 𝜇(�̄�𝑥1
, . . . , �̄�𝑥𝑚

), where 𝜇 is a 𝜏1-term
and 𝑥1 < · · · < 𝑥𝑚.

(2) If 𝑥, 𝑦 ∈ 𝑙, then ℳ |= 𝜙(�̄�𝑥, �̄�𝑦) if and only if 𝑥 < 𝑦.
(3) If 𝜓(�̄�1 . . . , �̄�𝑚) is an atomic 𝜏1-formula, 𝑥1 < · · · < 𝑥𝑚 and 𝑦1 < · · · < 𝑦𝑚,

then
ℳ |= 𝜓(�̄�𝑥1

, . . . , �̄�𝑥𝑚
) iff ℳ |= 𝜓(�̄�𝑦1

, . . . , �̄�𝑦𝑚
).

Suppose 𝑇 is a theory such that for each dense linear order 𝑙, 𝑇 has an Ehrenfeucht-
Mostowski model where the order is definable by an 𝐿∞𝜔-formula. We will only
consider linear orders of some fixed set 𝐵. Let 𝑙𝐵 be a dense linear order such that
every linear order of 𝐵 is a submodel of 𝑙𝐵 . Let 𝐸𝑀1(𝑙𝐵), 𝜏1, 𝜙, 𝑛, (�̄�𝑥)𝑥∈𝑙𝐵 be
such that the conditions of Definition 4.3 are satisfied for 𝑙𝐵 .

If 𝑙 ⊆ 𝑙𝐵 is dense, then we define 𝐸𝑀1(𝑙) as the submodel of 𝐸𝑀1(𝑙𝐵) generated
by �̄�𝑥, 𝑥 ∈ 𝑙. Notice that 𝐸𝑀1(𝑙), 𝜏1, 𝜙, 𝑛, (�̄�𝑥)𝑥∈𝑙 satisfy the conditions of
Definition 4.3 for 𝑙.

We call the linear order 𝑙 the index model of 𝐸𝑀1(𝑙). The indexed set (�̄�𝑥)𝑥∈𝑙

is the skeleton of 𝐸𝑀1(𝑙), and the tuples �̄�𝑥, 𝑥 ∈ 𝑙, are the generating elements of
𝐸𝑀1(𝑙). Let us denote 𝐸𝑀(𝑙) = 𝐸𝑀1(𝑙) ↾ 𝜏 .

Suppose 𝑇 is a theory such that for each dense linear order 𝑙, 𝑇 has an Ehrenfeucht-
Mostowski model where the order is definable by an 𝐿∞𝜔1

-formula, and 𝐵 contains
only 𝜔1-dense linear orders. Then we can define 𝐸𝑀1(𝑙) and 𝐸𝑀(𝑙) for all 𝑙 ∈ 𝐵
as above.

Definition 4.4 (Generalized Ehrenfeucht-Mostowski models). We say that a func-
tion Φ is proper for 𝐾𝛾

𝑡𝑟, if there is a vocabulary 𝜏1 and for each 𝐴 ∈ 𝐾𝛾
𝑡𝑟, there is

a model ℳ1 and tuples �̄�𝑠, 𝑠 ∈ 𝐴, of elements of ℳ1 such that the following two
hold:

∙ Every element of ℳ1 is an interpretation of some 𝜇(�̄�𝑠), where 𝜇 is a 𝜏1-
term.

∙ 𝑡𝑝𝑎𝑡(�̄�𝑠, ∅,ℳ1) = Φ(𝑡𝑝𝑎𝑡(𝑠, ∅, 𝐴)).
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Notice that for each 𝐴, the previous conditions determined ℳ1 up to isomor-
phism. We may assume ℳ1, �̄�𝑠, 𝑠 ∈ 𝐴, are unique for each 𝐴. We denote ℳ1 by
𝐸𝑀1(𝐴,Φ).

We call 𝐴 the index model of 𝐸𝑀1(𝐴,Φ). The indexed set (�̄�𝑠)𝑠∈𝐴 is the skeleton
of 𝐸𝑀1(𝐴,Φ), and the tuples �̄�𝑠, 𝑠 ∈ 𝐴, are the generating elements of 𝐸𝑀1(𝐴,Φ).

Suppose 𝑇 is a countable complete theory in a countable vocabulary 𝜏 , 𝜏1 a
Skolemization of 𝜏 , and 𝑇 1 the Skolemization of 𝑇 by 𝜏1. If there is a proper
function Φ for 𝐾𝛾

𝑡𝑟, then for every 𝐴 ∈ 𝐾𝛾
𝑡𝑟, we will denote by 𝐸𝑀(𝐴,Φ) =

𝐸𝑀1(𝐴,Φ) ↾ 𝜏 .
We call 𝐸𝑀1(𝑙) and 𝐸𝑀1(𝐴,Φ) Ehrenfeucht-Mostowski models. As it was men-

tioned before, the sets of indiscernibles play an important role in the Ehrenfeucht-
Mostowski models. For more on indiscernibles and types see [41] and [50], where
indiscernible trees and generalized indiscernible sets are studied.

Definition 4.5. Let 𝜀, 𝛾 < 𝜅 be a regular cardinals.

∙ 𝐴 ∈ 𝐾𝛾
𝑡𝑟 of size at most 𝜅, is locally (𝜅, 𝜀)-nice if for every 𝜂 ∈ 𝐴∖𝑃𝐴

𝛾 ,

(𝑆𝑢𝑐𝐴(𝜂), <) is (𝜅, 𝜀)-nice, 𝑆𝑢𝑐𝐴(𝜂) is infinite, and there is 𝜉 ∈ 𝑃𝐴
𝛾 such

that 𝜂 ≺ 𝜉.
∙ 𝐴 ∈ 𝐾𝛾

𝑡𝑟 is (< 𝜅)-stable if for every 𝐵 ⊆ 𝐴 of size smaller than 𝜅,

𝜅 > |{𝑡𝑝𝑏𝑠(𝑎,𝐵,𝐴) | 𝑎 ∈ 𝐴}|.

By Theorem 2.11, we know that there is a linear order that is 𝜀-dense, (< 𝜅)-
stable, (𝜅, 𝜀)-nice, and 𝜅-colorable.

Even though in this section we are working under the assumption 𝛽 = 2, the
following two results are true for any 𝛽 < 𝜅.

Lemma 4.6. For every 𝑓 ∈ 𝛽𝜅, 𝜌 < 𝛽, and 𝜂 ∈ (𝐽𝑓 )<𝛾 , there is 𝜉 ∈ (𝐽𝑓 )𝛾 such
that 𝜂 < 𝜉 and 𝑐𝑓 (𝜉) = 𝜌.

Proof. Let 𝑓 ∈ 𝛽𝜅, such that 𝜂 ∈ (𝐽𝑔)<𝛾 , and 𝑟 = 𝑑𝑜𝑚(𝜂). By The construction of
𝐽𝑓 , there is 𝜂′ ∈ (𝐽𝑔)<𝛾 such that 𝜂 ≺ 𝜂′ and 𝑛 = 𝑑𝑜𝑚(𝜂′) is a successor ordinal.

Let us construct 𝜉, such that 𝜂 ≺ 𝜉 and 𝑐𝑓 (𝜉) = 𝜌.

∙ 𝜉 ↾ 𝑛 = 𝜂′.
∙ if 𝑛 ≤ 𝑚 < 𝛾,

– 𝜉1(𝑚) = 𝜉1(𝑛− 1) + 1.
– 𝜉2(𝑚) = 𝜉3(𝑛− 1) + 𝜉4(𝑛− 1).
– 𝜉3(𝑚) = 𝜉2(𝑛) + 𝛾.

– let 𝜚 and 𝜁 be such that 𝑑𝑜𝑚(𝜁) = [𝑛, 𝛾), 𝜁 ∈ 𝑍
𝜉2(𝑛),𝜉3(𝑛)
𝜚 with 𝑐(𝜁) = 𝜌.

Such 𝜚 and 𝜁 exist by Definition 3.2.
– 𝜉4(𝑚) = 𝜚.
– 𝜉5↾[𝑛,𝛾) = 𝜁.

By the way we defined 𝜉, we know that 𝜉 ∈ 𝐽𝑓 and 𝜂 ≺ 𝜉. By the item (8) (a)
on the construction of 𝐽𝑓 , we know that 𝑐𝑓 (𝜉) = 𝑐(𝜉5↾[𝑛,𝛾)) = 𝜌.

□

Definition 4.7. For every 𝑓 ∈ 2𝜅, define the tree 𝐴𝑓 ⊆ 𝐴𝑓 by: 𝑥 ∈ 𝐴𝑓 if and only
if 𝑥 is not a leaf of 𝐴𝑓 or 𝑥 is a leaf such that 𝑑𝑓 (𝑥) = 1. For every 𝑓 ∈ 2𝜅, define
the 𝜅-representation A𝑓 = ⟨(𝐴𝑓 )𝛼 | 𝛼 < 𝜅⟩ of 𝐴𝑓 by

(𝐴𝑓 )𝛼 = {𝜂 ∈ 𝐴𝑓 | 𝜂 ∈ 𝐴𝑓
𝛼},

where A𝑓 = ⟨𝐴𝑓
𝛼 | 𝛼 < 𝜅⟩ is the 𝜅-representation introduced in the proof of Theorem

3.16.
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Theorem 4.8. For any 𝑓 ∈ 2𝜅, 𝐴𝑓 is a locally (𝜅, 𝜀)-nice and (< 𝜅)-stable ordered
tree and satisfies: For all 𝑓, 𝑔 ∈ 2𝜅,

𝑓 =2
𝛾 𝑔 ⇔ 𝐴𝑓

∼= 𝐴𝑔.

Proof. Recall that 𝛾 is such that for all 𝛼 < 𝜅, 𝛼𝛾 < 𝜅, from Fact 3.16, we know
that for all 𝑓, 𝑔 ∈ 2𝜅,

𝑓 =2
𝛾 𝑔 ⇔ 𝐴𝑓

∼= 𝐴𝑔.

From the way 𝐴𝑓 was constructed, we know that for all 𝜂 ∈ 𝐴𝑓∖𝑃
𝐴𝑓
𝛾 , (𝑆𝑢𝑐𝐴𝑓

(𝜂), <)
is (𝜅, 𝜀)-nice and 𝑆𝑢𝑐𝐴𝑓

(𝜂) is infinite. From Lemma 4.6 and the way 𝐴𝑓 was

constructed, for all 𝜂 ∈ 𝐴𝑓∖𝑃
𝐴𝑓
𝛾 there is 𝜉 ∈ 𝑃𝐴

𝛾 such that 𝜂 ≺ 𝜉. Since the
branches of the trees 𝐴𝑓 have length at most 𝛾 + 1 and 𝐼 is (< 𝜅)-stable, then the
trees 𝐴𝑓 are (< 𝜅)-stable. □

The trees 𝐴𝑓 are not the index models, we will use these trees to construct the
index models (depending on the theory). Clearly, the properties of the trees 𝐴𝑓

will be important. A very important property that we will need is homogenicity,
it is related to indiscernible sets. Let 𝜐 ≤ 𝜅 be a regular cardinal, a tree 𝐴 is
𝜐-homogeneous with respect to quantifier free formulas if the following holds:

For every partial isomorphisms 𝐹 : 𝑋 → 𝐴, where |𝑋| < 𝜀 is a subset of 𝐴, and
𝑎 in 𝐴; there is a partial isomorphisms 𝑔 : 𝑋 ∪ 𝑎→ 𝐴 that extends 𝐹 .

See [22] Chapter 19, for more on homogeneous models.

Fact 4.9. For all 𝑓 ∈ 2𝜅, 𝐴𝑓 is 𝜀-homogeneous with respect to quantifier free
formulas.

Proof. Since 𝐼 is 𝜀-dense and by the way 𝐴𝑓 was constructed, we know that for all
𝑓 ∈ 2𝜅, 𝐴𝑓 is closed and for all 𝜂 ∈ 𝐴𝑓 , ¬𝑃𝛾(𝜂), < ↾𝑆𝑢𝑐𝐴𝑓

(𝜂) is 𝜀-dense. Therefore,
for all 𝑓 ∈ 2𝜅, 𝑋 ⊆ 𝐴𝑓 with |𝑋| < 𝜀, partial isomorphisms 𝐹 : 𝑋 → 𝐴𝑓 , and
𝑎 ∈ 𝐴𝑓∖𝑋; there is 𝑏 ∈ 𝐴𝑓∖𝐹 [𝑋] such that 𝑏 |= 𝐹 (𝑡𝑝𝑞𝑓 (𝑎,𝑋,𝐴𝑓 )). □

We have finished the general preparations. The trees 𝐴𝑓 will be used to con-
struct the index models, we can proceed to construct the models (depending on the
theory).

4.2. Stable unsuperstable theories. This case was studied in [37] under the
assumption 𝛾 = 𝜀 = 𝜃 = 𝜔, thus 𝐴𝑓 ∈ 𝐾𝜔

𝑡𝑟. In particular, in [[37], Definition 4.5]
the models were constructed by ℳ𝑓 = 𝐸𝑀(𝐴𝑓 ,Φ). Notice that this construction
requires the existence of a proper function Φ for 𝐾𝜔

𝑡𝑟, this can be found in [46]
Theorem 1.3, with proof in [47] Chapter VII 3.

Even more, in [37] the following was proved.

Fact 4.10 (Moreno, [37] Lemma 4.8). If 𝑇 is a countable complete unsuperstable
theory over a countable vocabulary, then for all 𝑓, 𝑔 ∈ 2𝜅, 𝑓 =2

𝜔 𝑔 if and only if
EM(𝐴𝑓 ,Φ) and EM(𝐴𝑔,Φ) are isomorphic.

4.3. Superstable theories with the OTOP. For the OTOP case we will use
𝜃 = 𝜀 = 𝜔, and 𝒬 = Q.

The following facts follow from the proof of [[44], Theorem 2.5] and the fact that
a theory 𝑇 with the OTOP is weakly unstable as an 𝐿𝜔1𝜔-theory, [[21], Definition
6.4 and Definition 6.5]; see [[21], Theorem 6.6].

Fact 4.11. Suppose 𝑇 is a theory with the OTOP in a countable vocabulary 𝜏 .
Then for each dense linear order 𝑙 we can find a model 𝒩 of a countable vocabulary
𝜏1 ⊇ 𝜏 such that 𝒩 is an Ehrenfeucht-Mostowski model of 𝑇 for 𝑙, where the order
is definable by an 𝐿∞𝜔-formula.
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Fact 4.12. Let ℳ be an Ehrenfeucht-Mostowski model of 𝑇 for 𝑙, and 𝐴 = (�̄�𝑥)𝑥∈𝑙.
If 𝑙 is dense, then 𝐴 is a set of indiscernibles relative to 𝐿∞𝜔.

Definition 4.13. For every 𝑓 ∈ 2𝜅 let us define the order 𝐾𝑂(𝑓) by:

I. 𝑑𝑜𝑚 𝐾𝑂(𝑓) = (𝑑𝑜𝑚 𝐴𝑓 × {0}) ∪ {(𝜂, 1) | 𝜂 ∈ 𝐴𝑓 & 𝐴𝑓 ̸|= 𝑃𝛾(𝜂)}.
II. For all 𝜂 ∈ 𝐴𝑓 such that 𝐴𝑓 ̸|= 𝑃𝛾(𝜂), (𝜂, 0) <𝐾𝑂(𝑓) (𝜂, 1).

III. If 𝜂, 𝜉 ∈ 𝐴𝑓 such that 𝐴𝑓 ̸|= 𝑃𝛾(𝜉) ∨ 𝑃𝛾(𝜂), then 𝜂 ≺ 𝜉 if and only if

(𝜂, 0) <𝐾𝑂(𝑓) (𝜉, 0) <𝐾𝑂(𝑓) (𝜉, 1) <𝐾𝑂(𝑓) (𝜂, 1).

IV. If 𝜂, 𝜉 ∈ 𝐴𝑓 such that 𝐴𝑓 |= 𝑃𝛾(𝜉) and 𝐴𝑓 ̸|= 𝑃𝛾(𝜂), then 𝜂 ≺ 𝜉 if and only
if

(𝜂, 0) <𝐾𝑂(𝑓) (𝜉, 0) <𝐾𝑂(𝑓) (𝜂, 1).

V. If 𝜂, 𝜉 ∈ 𝐴𝑓 , then 𝜂 < 𝜉 if and only if (𝜂, 1) <𝐾𝑂(𝑓) (𝜉, 0).

Notice that 𝐾𝑂(𝑓) is dense.

Lemma 4.14. Suppose 𝑇 is superstable with the OTOP in a countable relational
vocabulary 𝜏 . Let 𝜏1 be a Skolemization of 𝜏 , and 𝑇 1 be a complete theory in
𝜏1 extending 𝑇 and with Skolem-functions in 𝜏 . Then for every 𝑓 ∈ 2𝜅 there is

ℳ𝑓
1 |= 𝑇 1 with the following properties.

(1) There is a map ℋ : 𝐴𝑓 → (𝑑𝑜𝑚 ℳ𝑓
1 )𝑛 for some 𝑛 < 𝜔, 𝜂 ↦→ 𝑎𝜂, such that

ℳ𝑓
1 is the Skolem hull of {𝑎𝜂 | 𝜂 ∈ 𝐴𝑓}. Let us denote {𝑎𝜂 | 𝜂 ∈ 𝐴𝑓} by

𝑆𝑘(ℳ𝑓
1 ).

(2) ℳ𝑓 = ℳ𝑓
1 ↾ 𝜏 is a model of 𝑇 .

(3) 𝑆𝑘(ℳ𝑓
1 ) is indiscernible in ℳ𝑓

1 relative to 𝐿∞𝜔.
(4) There is a formula 𝜙 ∈ 𝐿∞𝜔(𝜏) such that for all 𝜂, 𝜈 ∈ 𝐴𝑓 and 𝑚 < 𝛾, if

𝐴𝑓 |= 𝑃𝑚(𝜂) ∧ 𝑃𝛾(𝜈), then ℳ𝑓 |= 𝜙(𝑎𝜈 , 𝑎𝜂) if and only if 𝐴𝑓 |= 𝜂 ≺ 𝜈.

Proof. By Fact 4.11, and Fact 4.12, there is an Ehrenfeucht-Mostowski model ℳ𝑓
1

for the linear order 𝐾𝑂(𝑓) where the order is definable by a 𝐿∞𝜔-formula 𝜓. Sup-
pose 𝜂 = (𝜂0, . . . , 𝜂𝑛) and 𝜉 = (𝜉0, . . . , 𝜉𝑛) are sequences in 𝐴𝑓 that have the same
quantifier free type. The sequences

⟨(𝜂0, 0), (𝜂0, 1), (𝜂1, 0), . . . , (𝜂𝑛, 0), (𝜂𝑛, 1)⟩

and

⟨(𝜉0, 0), (𝜉0, 1), (𝜉1, 0), . . . , (𝜉𝑛, 0), (𝜉𝑛, 1)⟩
have the same quantifier free type in 𝐾𝑂(𝑓). Let the skeleton of ℳ𝑓

1 be {𝑎𝑥 |
𝑥 ∈ 𝐾𝑂(𝑓)}.

Let us define the 𝐴𝑓 -skeleton of ℳ𝑓
1 to be the set

{𝑎(𝜂,0)⌢𝑎(𝜂,1) | 𝜂 ∈ 𝐴𝑓 & 𝐴𝑓 ̸|= 𝑃𝛾(𝜂)} ∪ {𝑎(𝜂,0)⌢𝑎(𝜂,0) | 𝜂 ∈ 𝐴𝑓 & 𝐴𝑓 |= 𝑃𝛾(𝜂)}.

For all 𝜂 ∈ 𝐴𝑓 such that 𝐴𝑓 ̸|= 𝑃𝛾(𝜂), let us denote 𝑏𝜂 = 𝑎(𝜂,0)
⌢𝑎(𝜂,1). For all

𝜂 ∈ 𝐴𝑓 such that 𝐴𝑓 |= 𝑃𝛾(𝜂), let us denote 𝑏𝜂 = 𝑎(𝜂,0)
⌢𝑎(𝜂,0). It is clear that (1)

and (2) follow from the construction. Fact 4.12 implies (3). Let us show that (4)
holds. From the construction, 𝐾𝑂(𝑓) is definable in ℳ𝑓 by the formula 𝜓(�̄�, 𝑐),
i.e. ℳ𝑓 |= 𝜓(𝑎𝑥, 𝑎𝑦) if and only if 𝐾𝑂(𝑓) |= 𝑥 < 𝑦. Let 𝜙(𝑥0, 𝑥1, 𝑦0, 𝑦1) be the
formula

𝜓(𝑥0, 𝑦0) ∧ 𝜓(𝑦1, 𝑥1).

Therefore, for all 𝜂, 𝜈 ∈ 𝐴𝑓 and 𝑚 < 𝛾 such that 𝐴𝑓 |= 𝑃𝑚(𝜂) ∧ 𝑃𝛾(𝜈),

𝜙((𝑎𝜂, 0), (𝑎𝜂, 1), (𝑎𝜈 , 0), (𝑎𝜈 , 1))

holds in ℳ𝑓 if and only if 𝐴𝑓 |= 𝜂 ≺ 𝜈. □
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4.4. Unstable theories. For the unstable case we will use 𝜃 = 𝜀 = 𝜔, and 𝒬 = Q.
Thus the construction of the models follow as in the OTOP case.

Fact 4.15 (Shelah, [43]; Hyttinen-Tuuri, [21] Lemma 4.7). Suppose 𝑇 is a complete
unstable theory in a countable vocabulary 𝜏 . Then for each linear order 𝑙 we can
find a model 𝒩 of a countable vocabulary 𝜏1 ⊇ 𝜏 such that 𝒩 is an Ehrenfeucht-
Mostowski model of 𝑇 for 𝑙, where the order is definable by a first order formula 𝜓.
Even more, 𝐴 = (�̄�𝑥)𝑥∈𝑙 is a set of indiscernibles relative to 𝐿𝜔𝜔.

Since we do not need a dense linear order, we can define (𝜂, 1) also for elements
at the level 𝛾.

Definition 4.16. For every 𝑓 ∈ 2𝜅 let us define the order 𝐾𝑈 (𝑓) by:

I. 𝑑𝑜𝑚 𝐾𝑈 (𝑓) = (𝑑𝑜𝑚 𝐴𝑓 × {0}) ∪ (𝑑𝑜𝑚 𝐴𝑓 × {1}).
II. For all 𝜂 ∈ 𝐴𝑓 , (𝜂, 0) <𝐾𝑈 (𝑓) (𝜂, 1).

III. If 𝜂, 𝜉 ∈ 𝐴𝑓 , then 𝜂 ≺ 𝜉 if and only if

(𝜂, 0) <𝐾𝑈 (𝑓) (𝜉, 0) <𝐾𝑈 (𝑓) (𝜉, 1) <𝐾𝑈 (𝑓) (𝜂, 1).

IV. If 𝜂, 𝜉 ∈ 𝐴𝑓 , then 𝜂 < 𝜉 if and only if (𝜂, 1) <𝐾𝑈 (𝑓) (𝜉, 0).

Lemma 4.17. Suppose 𝑇 is a complete unstable theory in a countable vocabulary
𝜏 . Let 𝜏1 be a Skolemization of 𝜏 , and 𝑇 1 be a complete theory in 𝜏1 extending 𝑇

and with Skolem-functions in 𝜏 . Then for every 𝑓 ∈ 2𝜅 there is ℳ𝑓
1 |= 𝑇 1 with the

following properties.

(1) There is a map ℋ : 𝐴𝑓 → (𝑑𝑜𝑚 ℳ𝑓
1 )𝑛 for some 𝑛 < 𝜔, 𝜂 ↦→ 𝑎𝜂, such that

ℳ𝑓
1 is the Skolem hull of {𝑎𝜂 | 𝜂 ∈ 𝐴𝑓}. Let us denote {𝑎𝜂 | 𝜂 ∈ 𝐴𝑓} by

𝑆𝑘(ℳ𝑓
1 ).

(2) ℳ𝑓 = ℳ𝑓
1 ↾ 𝜏 is a model of 𝑇 .

(3) 𝑆𝑘(ℳ𝑓
1 ) is indiscernible in ℳ𝑓

1 relative to 𝐿𝜔𝜔.
(4) There is a formula 𝜙 ∈ 𝐿𝜔𝜔(𝜏) such that for all 𝜂, 𝜈 ∈ 𝐴𝑓 and 𝑚 < 𝛾, if

𝐴𝑓 |= 𝑃𝑚(𝜂) ∧ 𝑃𝛾(𝜈), then ℳ𝑓 |= 𝜙(𝑎𝜈 , 𝑎𝜂) if and only if 𝐴𝑓 |= 𝜂 ≺ 𝜈.

Proof. Similar to Lemma 4.14. Instead of using Fact 4.11 and Fact 4.12, use Fact
4.15. □

4.5. Superstable theories with the DOP. For the DOP case we will use 𝜀 = 𝜔1,
thus 𝜃 = 2𝜔 = c. Let us denote by 𝑆𝐻(𝑋) the Skolem-hull of 𝑋, i.e. {𝜇(𝑎) |
𝑎 ∈ 𝑋,𝜇 an 𝜏1-term}.

Fact 4.18 (Shelah, [45], Fact 2.5B; Hyttinen-Tuuri, [21] Theorem 6.1). Suppose 𝑇
is a countable superstable theory with the DOP in a countable vocabulary 𝜏 . Then
there exists a vocabulary 𝜏1 ⊇ 𝜏 , |𝜏1| = 𝜔1, such that for every linear order 𝑙 we
can find a 𝜏1-model 𝒩 which is an Ehrenfeucht-Mostowski model of 𝑇 for 𝑙, where
the order is definable by an 𝐿𝜔1𝜔1

-formula.

Definition 4.19. For every 𝑓 ∈ 2𝜅 let us define the order 𝐾𝐷(𝑓) by:

I. 𝑑𝑜𝑚 𝐾𝐷(𝑓) = (𝑑𝑜𝑚 𝐴𝑓 × {0}) ∪ (𝑑𝑜𝑚 𝐴𝑓 × {1}).
II. For all 𝜂 ∈ 𝐴𝑓 , (𝜂, 0) <𝐾𝐷(𝑓) (𝜂, 1).

III. If 𝜂, 𝜉 ∈ 𝐴𝑓 , then 𝜂 ≺ 𝜉 if and only if

(𝜂, 0) <𝐾𝐷(𝑓) (𝜉, 0) <𝐾𝐷(𝑓) (𝜉, 1) <𝐾𝐷(𝑓) (𝜂, 1).

IV. If 𝜂, 𝜉 ∈ 𝐴𝑓 , then 𝜂 < 𝜉 if and only if (𝜂, 1) <𝐾𝐷(𝑓) (𝜉, 0).

Lemma 4.20. Suppose 𝑇 is superstable with the DOP in a countable relational
vocabulary 𝜏 . Let 𝜏1 be a Skolemization of 𝜏 , and 𝑇 1 be a complete theory in
𝜏1 extending 𝑇 and with Skolem-functions in 𝜏 . Then for every 𝑓 ∈ 2𝜅 there is

ℳ𝑓
1 |= 𝑇 1 with the following properties.
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(1) There is a map ℋ : 𝐴𝑓 → (𝑑𝑜𝑚 ℳ𝑓
1 )𝑛 for some 𝑛 < 𝜔, 𝜂 ↦→ 𝑎𝜂, such that

ℳ𝑓
1 is the Skolem hull of {𝑎𝜂 | 𝜂 ∈ 𝐴𝑓}. Let us denote {𝑎𝜂 | 𝜂 ∈ 𝐴𝑓} by

𝑆𝑘(ℳ𝑓
1 ).

(2) ℳ𝑓 = ℳ𝑓
1 ↾ 𝜏 is a model of 𝑇 .

(3) 𝑆𝑘(ℳ𝑓
1 ) is indiscernible in ℳ𝑓

1 relative to 𝐿𝜔1𝜔1
.

(4) There is a formula 𝜙 ∈ 𝐿𝜔1𝜔1(𝜏) such that for all 𝜂, 𝜈 ∈ 𝐴𝑓 and 𝑚 < 𝛾, if
𝐴𝑓 |= 𝑃𝑚(𝜂) ∧ 𝑃𝛾(𝜈), then ℳ𝑓 |= 𝜙(𝑎𝜈 , 𝑎𝜂) if and only if 𝐴𝑓 |= 𝜂 ≺ 𝜈.

Proof. Similar to Lemma 4.14. Instead of use Fact 4.11 and Fact 4.12, use Fact
4.18. Only property (3) requires a proof. Let 𝑠 and 𝑡 be 𝑛-tuples of elements of 𝐴𝑓

such that 𝑡𝑝𝑎𝑡(𝑠, ∅, 𝐴𝑓 ) = 𝑡𝑝𝑎𝑡(𝑡, ∅, 𝐴𝑓 ). Since 𝑡𝑝𝑎𝑡(𝑠, ∅, 𝐴𝑓 ) = 𝑡𝑝𝑎𝑡(𝑡, ∅, 𝐴𝑓 ), there
is a partial isomorphism 𝐹 : 𝒮 → 𝐴𝑓 such that 𝐹 [𝒮] = 𝒯 , where 𝒮 and 𝒯 are the
sets of the elements of 𝑠 and 𝑡, respectively.

Claim 4.20.1. For all 𝜙(𝑥) ∈ 𝐿𝜔1𝜔1
with 𝑛 free variables, ℳ𝑓

1 |= 𝜙(�̄�𝑠) holds if

and only if ℳ𝑓
1 |= 𝜙(�̄�𝑡) .

Proof. We will proceed by induction on the complexity of 𝜙(𝑥). The non-trivial
cases are the quantifier cases.

Case ∃. Let 𝜙 be of the form ∃(𝑢)𝜓(𝑥), where 𝜓 satisfies the property of the

claim. Suppose ℳ𝑓
1 |= 𝜙(�̄�𝑠). There is a countable tuple 𝜈 ∈ ℳ𝑓

1 such that

ℳ𝑓
1 |= 𝜓[�̄�𝑠, 𝜈]. By the construction of ℳ𝑓

1 , there is a countable set 𝐵 ⊆ 𝐴𝑓 such
that for all 𝑖 < 𝜔 there is 𝜇𝑖, 𝑚(𝑖) < 𝜔, and a tuple (𝑧𝑖0, . . . , 𝑧

𝑖
𝑚(𝑖)) of elements

of 𝑆 ∪ 𝐵 such that 𝜈𝑖 = 𝜇𝑖(�̄�𝑧𝑖
0
, . . . , �̄�𝑧𝑖

𝑚(𝑖)
). Since 𝐴𝑓 is 𝜔1-homogeneous, there

is a partial isomorphism ℱ : 𝑆 ∪ 𝐵 → 𝐴𝑓 that extends 𝐹 . By the way ℳ𝑓
1 was

constructed, there is a partial isomorphism ℱ̄ : 𝑆𝐻({𝑎𝑥 | 𝑥 ∈ 𝑠 ∪ 𝐵}) → ℳ𝑓
1

such that ℱ̄(𝑎𝑥) = 𝑎ℱ(𝑥). For all 𝑖 < 𝜔, let 𝜛𝑖 = ℱ̄(𝜈𝑖), �̄� = (𝜛0, . . .). So

ℳ𝑓
1 |= 𝜓(�̄�𝑡, �̄�), we conclude that ℳ𝑓

1 |= 𝜙(�̄�𝑡).
The case ℳ𝑓 |= 𝜙(�̄�𝑡) is similar.
Case ∀. Let 𝜙 be of the form ∀(𝑢)𝜓(𝑥), where 𝜓 satisfies the property of the

claim. Let us suppose, towards contradiction, that ℳ𝑓
1 |= 𝜙(�̄�𝑠) and ℳ𝑓

1 ̸|= 𝜙(�̄�𝑡).

Therefore, there is a countable tuple �̄� ∈ ℳ𝑓
1 such that ℳ𝑓

1 |= ¬𝜓[�̄�𝑡, �̄�]. By a

similar argument as in the existential case, we can conclude that there is 𝜈 ∈ ℳ𝑓
1

such that ℳ𝑓
1 |= ¬𝜓[�̄�𝑠, 𝜈]. On the other hand, ℳ𝑓

1 |= 𝜙(�̄�𝑠) implies ℳ𝑓
1 |= 𝜓[�̄�𝑠, 𝜈],

a contradiction.
□

Property (3) follows from the claim.
□

4.6. The isomorphism theorem.

Definition 4.21. Let 𝐴 ∈ 𝐾𝛾
𝑡𝑟, 𝐵 ⊆ 𝐴 and 𝜂 ∈ 𝐴.

∙ We say that 𝐵 is downward closed if for all 𝜂 ∈ 𝐵, 𝜂 ↾𝑚 ∈ 𝐵 if 𝑚 < 𝑙𝑔(𝜂).
∙ Let 𝑑(𝜂) = (𝜂 ↾ 𝛼)𝛼≤𝑙𝑔(𝜂).

Fact 4.22 (Hyttinen-Tuuri, [21], Lemma 8.11). Let 𝐴 ∈ 𝐾𝛾
𝑡𝑟 and 𝐵 ⊆ 𝐴, 𝐵

downward closed. Let 𝜂1 = (𝜂01 , . . . , 𝜂
𝑛
1 ) and 𝜂2 = (𝜂02 , . . . , 𝜂

𝑛
2 ) be sequences of

elements of 𝐴. Suppose:

∙ 𝑡𝑝(𝜂1, ∅, 𝐴) = 𝑡𝑝(𝜂2, ∅, 𝐴);
∙ for all 𝑖 ≤ 𝑛, 𝑡𝑝𝑏𝑠(𝑑(𝜂𝑖1), 𝐵, (𝐴,≺, <)) = 𝑡𝑝𝑏𝑠(𝑑(𝜂𝑖2), 𝐵, (𝐴,≺, <)).

Then 𝑡𝑝𝑏𝑠(𝜂1, 𝐵,𝐴) = 𝑡𝑝𝑏𝑠(𝜂2, 𝐵,𝐴).
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Theorem 4.23. Suppose 𝑇 is a non-classifiable first order theory in a countable
relational vocabulary 𝜏 .

(1) If 𝑇 is stable unsuperstable, 𝛾 = 𝜔, and for all 𝛼 < 𝜅, 𝛼𝜔 < 𝜅, then for all
𝑓, 𝑔 ∈ 2𝜅

𝑓 =2
𝛾 𝑔 iff ℳ𝑓 ∼= ℳ𝑔.

(2) If 𝑇 is unstable or superstable with the OTOP, 𝜔 ≤ 𝛾 < 𝜅 is such that for
all 𝛼 < 𝜅, 𝛼𝛾 < 𝜅, then for all 𝑓, 𝑔 ∈ 2𝜅

𝑓 =2
𝛾 𝑔 iff ℳ𝑓 ∼= ℳ𝑔.

(3) If 𝑇 is superstable with the DOP, 𝜅 is inaccessible or 𝜅 = 𝜆+ and 2c ≤ 𝜆,
and 𝜔1 ≤ 𝛾 < 𝜅 is such that for all 𝛼 < 𝜅, 𝛼𝛾 < 𝜅, then for all 𝑓, 𝑔 ∈ 2𝜅,

𝑓 =2
𝛾 𝑔 iff ℳ𝑓 ∼= ℳ𝑔.

Proof. The case 𝑇 stable unsuperstable, follows from Fact 4.10. Let us prove the
case when 𝑇 is either unstable or superstable. Recall the assumptions of each case

∙ If 𝑇 is unstable, then 𝜀 = 𝜔 and 𝐿 = 𝐿𝜔𝜔;
∙ If 𝑇 is superstable with the OTOP, then 𝜀 = 𝜔 and 𝐿 = 𝐿∞𝜔;
∙ If 𝑇 is superstable with the DOP, then 𝜀 = 𝜔1 and 𝐿 = 𝐿𝜔1𝜔1

;

By Theorem 4.8 𝑓 =2
𝛾 𝑔 holds if and only if 𝐴𝑓

∼= 𝐴𝑔. It is enough to show that

𝐴𝑓
∼= 𝐴𝑔 iff ℳ𝑓 ∼= ℳ𝑔.

⇒) It is clear that if 𝐴𝑓
∼= 𝐴𝑔, then ℳ𝑓 ∼= ℳ𝑔.

⇐) Recall the filtration A𝑓 from Definition 4.7. For all 𝑓 ∈ 2𝜅, 𝜂 ∈ 𝐴𝑓 , 𝐴𝑓 ̸|=
𝑃𝛾(𝜂), and 𝛼 ≤ 𝜅 let

𝐵𝑓 (𝜂, 𝛼) = 𝑆𝑢𝑐𝐴𝑓
(𝜂) ∩ (𝐴𝑓 )𝛼.

It is clear that ⟨𝐵𝑓 (𝜂, 𝛼) | 𝛼 < 𝜅⟩ is a 𝜅-representation of 𝑆𝑢𝑐𝐴𝑓
(𝜂). By Theorem

4.8 𝐴𝑓 is (𝜅, 𝜀)-nice, in particular 𝑆𝑢𝑐𝐴𝑓
(𝜂) is isomorphic to 𝐼. Since any two

representations coincide in a club, for any 𝜂 ∈ 𝐴𝑓 there is a club 𝐶𝜂 such that for
all 𝛿 ∈ 𝐶𝜂 with 𝑐𝑓(𝛿) ≥ 𝜀 and 𝜈 ∈ 𝑆𝑢𝑐𝐴𝑓

(𝜂) there is 𝛽 < 𝛿 such that

∀𝜎 ∈ 𝐵𝑓 (𝜂, 𝛿) [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐵𝑓 (𝜂, 𝛽) (𝜎 ≥ 𝜎′ ≥ 𝜈)].

Let
𝐶𝑓 = {𝛿 < 𝜅 | 𝑐𝑓(𝛿) ≥ 𝜀 and for all 𝜂 ∈ (𝐴𝑓 )𝛿, 𝛿 ∈ 𝐶𝜂}

and 𝐶𝑓 be 𝐶𝑓 closed under 𝛼-limits for 𝛼 < 𝜀. Notice that 𝐶𝑓 is a club that satisfies
that for all 𝛿 ∈ 𝐶𝑓 with 𝑐𝑓(𝛿) ≥ 𝜀, 𝜂 ∈ 𝐴𝑓 , 𝐴𝑓 ̸|= 𝑃𝛾(𝜂), and 𝜈 ∈ 𝑆𝑢𝑐𝐴𝑓

(𝜂),

∀𝜎 ∈ 𝐵𝑓 (𝜂, 𝛿) [𝜎 > 𝜈 ⇒ ∃𝜎′ ∈ 𝐵𝑓 (𝜂, 𝛽) (𝜎 ≥ 𝜎′ ≥ 𝜈)].

Let us define 𝐶𝑔 in a similar way. Let 𝐶0 = 𝐶𝑓 ∩ 𝐶𝑔.
Assume, for sake of contradiction, that 𝑓, 𝑔 ∈ 2𝜅 are such that 𝑓 ̸=2

𝛾 𝑔, and

ℳ𝑓 are ℳ𝑔 isomorphic. Since 𝑓 ̸=2
𝛾 𝑔, there is a stationary set 𝑆 ⊆ 𝑆𝜅

𝛾 such
that for all 𝛼 ∈ 𝑆, 𝑓(𝛼) ̸= 𝑔(𝛼). Assume, without loss of generality, that 𝑆 ⊆ 𝑆𝜅

𝛾

is a stationary set such that for all 𝛼 ∈ 𝑆, 𝑓(𝛼) = 1 and 𝑔(𝛼) = 0. Let 𝐹 be an
isomorphism from ℳ𝑓 to ℳ𝑔.

Let us denote by �̄�𝜂 and �̄�𝜉 the elements of 𝑆𝑘(ℳ𝑓
1 ) and 𝑆𝑘(ℳ𝑔

1). For a sequence
�̄� = (𝑎0, . . . , 𝑎𝑚) from ℳ𝑓 we denote 𝐹 (�̄�) = (𝐹 (𝑎0), . . . , 𝐹 (𝑎𝑚)) and for a sequence
𝑣 = (𝑣0, . . . , 𝑣0) from 𝐴𝑔 we denote �̄�𝑣 = �̄�⌢𝑣0 · · ·⌢ �̄�𝑣𝑚 . For each 𝜂 ∈ 𝐴𝑓 let

𝐹 (𝑎𝜂) = (𝜇0
𝜂(�̄�𝑣𝜂 ), . . . , 𝜇𝑚

𝜂 (�̄�𝑣𝜂 )) = �̄�𝜂(�̄�𝑣𝜂 ),

where 𝑚 = 𝑙𝑔(�̄�𝜂) − 1, 𝜇𝑖
𝜂 are 𝜏1-terms and 𝑣𝜂 is a finite sequence of elements of

𝐴𝑔.
Let 𝑣𝜂 = (𝑣𝑖𝜂)𝑖<𝑙𝑔(𝑣𝜂). Let

∙ 𝐶1 = {𝛿 ∈ 𝐶0 | ∀𝜂 ∈ 𝐴𝑓 (𝜂 ∈ (𝐴𝑓 )𝛿 implies 𝑣𝜂 ⊆ (𝐴𝑔)𝛿)};
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∙ 𝐶 ′
2 = {𝛿 ∈ 𝐶1 | ∀𝛼 < 𝛿 ∀𝜂 ∈ (𝐴𝑓 )𝛿 ∀𝜎1 ∈ 𝐵𝑓 (𝜂, 𝜅) ∃𝜎2 ∈ 𝐵𝑓 (𝜂, 𝛿)

[𝑣𝜎1
, 𝑣𝜎2

realizes the same atomic type over (𝐴𝑔)𝛼 and �̄�𝜎1
= �̄�𝜎2

]}

∙ 𝐶2 = {𝛿 ∈ 𝐶 ′
2 | 𝑐𝑓(𝛿) ≥ 𝛾}

∙ 𝐶 = {𝛿 ∈ 𝐶2 | 𝛿 ∈ 𝐶2 & 𝛿 is a limit point of 𝐶2}.
It is clear that 𝐶1 is a club. Since 𝐴𝑔 is (< 𝜅)-stable ordered tree, there are less

than 𝜅 possible 𝑏𝑠-types of 𝑣𝜎1
over (𝐴𝑔)𝛼, and since |𝜏1| < 𝜅, there are less than

𝜅 possible terms �̄�𝜎1
, so 𝐶 ′

2 is a club. Thus 𝐶 ′
2 ∩ 𝑆 ̸= ∅. Since 𝑆 ⊆ 𝑆𝜅

𝛾 , 𝐶2 ∩ 𝑆 ̸= ∅.
So 𝑆 ∩ 𝐶 ̸= ∅ and it is a subset of 𝑆𝜅

𝛾 .
Let 𝛿 ∈ 𝑆 ∩ 𝐶, so there is 𝜂 ∈ 𝐴𝑓 , such that:

(1) 𝐴𝑓 |= 𝑃𝛾(𝜂).
(2) For all 𝑛 < 𝛾, 𝜂 ↾ 𝑛 ∈ (𝐴𝑓 )𝛿.
(3) For all 𝛼 < 𝛿, there is 𝑚 < 𝛾 such that 𝜂 ↾𝑚 /∈ (𝐴𝑓 )𝛼.

For each 𝑛 < 𝑙𝑔(𝑣𝜂) there is 𝛼𝑛 ∈ 𝐶2 ∩ 𝛿 such that one of the following holds

I. 𝑣𝑛𝜂 ∈ (𝐴𝑔)𝛼𝑛
.

II. There is 𝑚𝑛 < 𝑙𝑔(𝑣𝑛𝜂 ) such that for 𝑤0 = 𝑣𝑛𝜂 ↾𝑚𝑛 and 𝑤1 = 𝑣𝑛𝜂 ↾ (𝑚𝑛 + 1)
the following hold

∙ 𝑤0 ∈ (𝐴𝑔)𝛼𝑛 and 𝑤1 /∈ (𝐴𝑔)𝛿.
∙ ∀𝜎 ∈ 𝐵𝑔(𝑤0, 𝛿) [𝜎 > 𝑤1 ⇒ ∃𝜎′ ∈ 𝐵𝑔(𝑤0, 𝛼𝑛) (𝜎 ≥ 𝜎′ ≥ 𝑤1)].

By the construction of 𝐴𝑔 and since 𝑔(𝛿) = 0, there is no 𝜈 /∈ (𝐴𝑔)𝛿 with
𝐴𝑔 |= 𝑃𝛾(𝜈) such that for all 𝑛 < 𝛾, 𝜂 ↾ 𝑛 ∈ (𝐴𝑔)𝛿.

Let 𝛼 = 𝑚𝑎𝑥{𝛼𝑛 | 𝑛 < 𝑙𝑔(𝑣𝜂)}, clearly 𝛼 ∈ 𝐶2 ∩ 𝛿. Since 𝛿 ∈ 𝐶 ∩ 𝑆, there is
𝜒 ∈ 𝐶2 such that 𝛼 < 𝜒 < 𝛿.

Notice that 𝑐𝑓(𝜒) ≥ 𝛾, therefore for all 𝑛 < 𝛾 limit, 𝜂 ↾ 𝑛 ∈ (𝐴𝑓 )𝜒 or there is
𝑛′ < 𝑛 such that 𝜂 ↾ 𝑛′ ∈ (𝐴𝑓 )𝜒 and 𝜂 ↾ 𝑛′ + 1 ∈ (𝐴𝑓 )𝜒. Let 𝑛 < 𝛾 be maximal
such that 𝜂 ↾ 𝑛 ∈ (𝐴𝑓 )𝜒. Let 𝜁1 = 𝜂 ↾ (𝑛 + 1), so 𝜁1 /∈ (𝐴𝑓 )𝜒. Since 𝜒 ∈ 𝐶2, there
is 𝜁2 ∈ 𝐵𝑓 (𝜂 ↾ 𝑛 , 𝜒), �̄�𝜁1 = �̄�𝜁2 , and 𝑣𝜁1 and 𝑣𝜁2 have the same atomic type over
(𝐴𝑔)𝛼. Notice that 𝜁1, 𝜁2 ∈ (𝐴𝑓 )𝛿, so 𝑣𝜁1 , 𝑣𝜁2 ⊆ (𝐴𝑔)𝛿.

Claim 4.23.1. 𝑡𝑝𝑎𝑡(𝑣
⌢
𝜁1
𝑣𝜂, ∅, 𝐴𝑔) = 𝑡𝑝𝑎𝑡(𝑣

⌢
𝜁2
𝑣𝜂, ∅, 𝐴𝑔)

Proof. By Fact 4.22 it is enough to show that for each 𝑛 < 𝑙𝑔(𝑣𝜂1
),

𝑡𝑝𝑏𝑠(𝑑(𝑣𝑛𝜁1), 𝑑(𝑣𝜂), (𝐴𝑔,≺, <)) = 𝑡𝑝𝑏𝑠(𝑑(𝑣𝑛𝜁2), 𝑑(𝑣𝜂), (𝐴𝑔,≺, <)).

Let 𝑣𝑛𝜁1 ↾ 𝑟 ∈ 𝑑(𝑣𝑛𝜁1) and 𝑣𝑘𝜂 ↾ 𝑟 ∈ 𝑑(𝑣𝜂).

Case 𝑣𝑛𝜁1 ↾ 𝑟1 = 𝑣𝑘𝜂 ↾ 𝑟2. Notice that 𝑟1 = 𝑟2. Since 𝑣𝑛𝜁1 ∈ (𝐴𝑔)𝛿, 𝑣𝑘𝜂 ↾ 𝑟1 ∈ (𝐴𝑔)𝛿
and 𝑣𝑘𝜂 ↾ 𝑟1 ∈ (𝐴𝑔)𝛼𝑘

. Therefore 𝑣𝑛𝜁1 ↾ 𝑟1 ∈ (𝐴𝑔)𝛼. Since 𝑣𝑛𝜁1 and 𝑣𝑛𝜁2 have the same

type over (𝐴𝑔)𝛼, 𝑣𝑛𝜁1 ↾ 𝑟1 ≺ 𝑣𝑛𝜁2 . Thus

𝑣𝑛𝜁1 ↾ 𝑟1 = 𝑣𝑛𝜁2 ↾ 𝑟1 = 𝑣𝑘𝜂 ↾ 𝑟2.

Case 𝑣𝑛𝜁1 ↾ 𝑟1 ≺ 𝑣𝑘𝜂 ↾ 𝑟2. As in the previous case, we can conclude that 𝑣𝑛𝜁1 ↾ 𝑟1 ∈
(𝐴𝑔)𝛼. Since 𝑣𝑛𝜁1 and 𝑣𝑛𝜁2 have the same type over (𝐴𝑔)𝛼, 𝑣𝑛𝜁2 ↾ 𝑟1 ≺ 𝑣𝑘𝜂 ↾ 𝑟2.

Case 𝑣𝑘𝜂 ↾ 𝑟2 ≺ 𝑣𝑛𝜁1 ↾ 𝑟1. As in the previous case, we can conclude that 𝑣𝑛𝜁1 ↾ 𝑟1 ∈
(𝐴𝑔)𝛼. Since 𝑣𝑛𝜁1 and 𝑣𝑛𝜁2 have the same type over (𝐴𝑔)𝛼, 𝑣𝑘𝜂 ↾ 𝑟2 ≺ 𝑣𝑛𝜁2 ↾ 𝑟1.

Case 𝑣𝑛𝜁1 ↾ 𝑟1 < 𝑣𝑘𝜂 ↾ 𝑟2. Clearly 𝑟1 = 𝑟2. If 𝑣𝑘𝜂 ↾ 𝑟2 ∈ (𝐴𝑔)𝛼, then 𝑣𝑛𝜁2 ↾ 𝑟1 < 𝑣𝑘𝜂 ↾ 𝑟2
(since 𝑣𝑛𝜁1 and 𝑣𝑛𝜁2 have the same type over (𝐴𝑔)𝛼).

Let us take care of the case 𝑣𝑘𝜂 ↾ 𝑟2 /∈ (𝐴𝑔)𝛼. So 𝑟2 > 𝑚𝑘 and 𝑣𝑘𝜂 ↾ 𝑟2 /∈ (𝐴𝑔)𝛿.

Since 𝑣𝑘𝜂 ↾ 𝑟2 − 1 ≺ 𝑣𝑛𝜁1 ↾ 𝑟1, and 𝑣𝑛𝜁1 ↾ 𝑟1 ∈ (𝐴𝑔)𝛿, 𝑟2 = 𝑚𝑘 + 1. By II above,

𝑣𝑛𝜁1 ↾ 𝑟1 ∈ (𝐴𝑔)𝛿 implies that there is 𝜎′ ∈ (𝐴𝑔)𝛼 such that 𝑣𝑛𝜁1 ↾ 𝑟1 ≤ 𝜎′ < 𝑣𝑘𝜂 ↾ 𝑟2.

Since 𝑣𝑛𝜁1 and 𝑣𝑛𝜁2 have the same type over (𝐴𝑔)𝛼, 𝑣𝑛𝜁2 ↾ 𝑟1 ≤ 𝜎′ < 𝑣𝑘𝜂 ↾ 𝑟2
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Case 𝑣𝑛𝜁1 ↾ 𝑟1 > 𝑣𝑘𝜂 ↾ 𝑟2. Following the proof of the previous case, we only have

to take care of the case 𝑣𝑘𝜂 ↾ 𝑟2 /∈ (𝐴𝑔)𝛿 and 𝑟2 = 𝑚𝑘 + 1. Since 𝑣𝑛𝜁2 ↾ 𝑟1 ∈ (𝐴𝑔)𝛿,

𝑣𝑛𝜁1 ↾ 𝑟1 ̸= 𝑣𝑘𝜂 ↾ 𝑟2. Therefore either 𝑣𝑛𝜁2 ↾ 𝑟1 < 𝑣𝑘𝜂 ↾ 𝑟2 or 𝑣𝑘𝜂 ↾ 𝑟2 < 𝑣𝑛𝜁2 ↾ 𝑟1. Let us

suppose, towards contradiction, 𝑣𝑘𝜂 ↾ 𝑟2 > 𝑣𝑛𝜁2 ↾ 𝑟1. By II above, 𝑣𝑛𝜁2 ↾ 𝑟1 ∈ (𝐴𝑔)𝛿
implies that there is 𝜎′ ∈ (𝐴𝑔)𝛼 such that 𝑣𝑛𝜁2 ↾ 𝑟1 ≤ 𝜎′ < 𝑣𝑘𝜂 ↾ 𝑟2 < 𝑣𝑛𝜁1 ↾ 𝑟1. A

contradiction, since 𝑣𝑛𝜁1 and 𝑣𝑛𝜁2 have the same type over (𝐴𝑔)𝛼.
□

From the previous claim and the way ℳ𝑔
1 was constructed (see Theorem 4.14

(3), Theorem 4.17 (3), and Theorem 4.20 (3)), we know that

𝑡𝑝𝐿(�̄�𝑣⌢
𝜁1

𝑣𝜂 , ∅,ℳ) = 𝑡𝑝𝐿(�̄�𝑣⌢
𝜁2

𝑣𝜂 , ∅,ℳ).

Since �̄�𝜁1 = �̄�𝜁2 ,

ℳ𝑔
1 |= 𝜙(�̄�𝜂(�̄�𝑣𝜂 ), �̄�𝜁1(�̄�𝑣𝜁1 )) ⇔ 𝜙(�̄�𝜂(�̄�𝑣𝜂 ), �̄�𝜁2(�̄�𝑣𝜁2 ))

so

ℳ𝑓
1 |= 𝜙(�̄�𝜂, �̄�𝜁1) ⇔ 𝜙(�̄�𝜂, �̄�𝜁2).

On the other hand, since 𝜁1 ≺ 𝜂 and 𝜁2 ̸≺ 𝜂,

ℳ𝑓 |= 𝜙(�̄�𝜂, �̄�𝜁1) ∧ ¬𝜙(�̄�𝜂, �̄�𝜁2),

a contradiction, since ℳ𝑓 = ℳ𝑓
1 ↾ 𝜏 and 𝜙 ∈ 𝐿(𝜏).

□

5. Generalized Borel reducibility

Now that we have constructed the models in detail, taking care of every possible
constant and variable, we have all we need to prove Theorem A and give prove
Friedman-Hyttinen-Kulikov’s conjecture. We can also prove Theorem B, which
gives an answer to “How big can be the gap?”

5.1. A Borel reducibility Main Gap in ZFC. The first step to prove Theorem
A, is to construct the continuous reduction

=2
𝛾 →˓𝑐

∼=𝑇

for each kind of non-classifiable theory.

Theorem 5.1. Let 𝜅 be inaccessible or 𝜅 = 𝜆+ = 2𝜆. Suppose 𝑇 is a countable
complete non-classifiable theory over a countable vocabulary, 𝜏 .

(1) If 𝑇 is stable unsuperstable, then let 𝜃 = 𝛾 = 𝜔.
(2) If 𝑇 is unstable, or superstable with the OTOP, then let 𝜃 = 𝜔 and 𝜔 ≤

𝛾 < 𝜅.
(3) If 𝑇 is superstable with the DOP, then let 𝜃 = 2𝜔 = c and 𝜔1 ≤ 𝛾 < 𝜅.

If 𝜃, 𝛾, and 𝜅 satisfy that ∀𝛼 < 𝜅, 𝛼𝛾 < 𝜅, and (2𝜃)+ ≤ 𝜅, then

=2
𝛾 →˓𝑐

∼=𝑇 .

Proof. For every 𝑓 ∈ 2𝜅, we will construct a model ℳ𝑓 isomorphic to ℳ𝑓 . We
will also construct a function 𝒢 : {ℳ𝑓 | 𝑓 ∈ 2𝜅} → 2𝜅, such that 𝒜𝒢(ℳ𝑓 )

∼= ℳ𝑓

and 𝑓 ↦→ 𝒢(ℳ𝑓 ) is continuous. By Remark 3.17, Definition 4.7, and the definition
of (𝐴𝑓 )𝛼,

𝑓 ↾ 𝛼 = 𝑔 ↾ 𝛼⇔ (𝐴𝑓 )𝛼 = (𝐴𝑔)𝛼.

For all 𝛼, 𝐴 ∈ 𝐾𝛾
𝑡𝑟, and a 𝜅-representation A = ⟨𝐴𝛼 | 𝛼 < 𝜅⟩ of 𝐴, let us denote by

𝐴𝛼 the set {𝑎𝑠 | 𝑠 ∈ 𝐴𝛼}, recall the construction of ℳ𝑓
1 . Since for all 𝛼 < 𝜅,

(𝐴𝑓 )𝛼 = (𝐴𝑔)𝛼 ⇔ 𝑆𝐻( ˜(𝐴𝑓 )𝛼) = 𝑆𝐻( ˜(𝐴𝑔)𝛼),
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for all 𝑓 we can construct a tuple (ℳ𝑓 , 𝐹𝑓 ), where ℳ𝑓 is a model isomorphic to
ℳ𝑓 and 𝐹𝑓 : ℳ𝑓 → ℳ𝑓 is an isomorphism, that satisfies the following: denote by

ℳ𝑓,𝛼 the preimage 𝐹−1
𝑓 [𝑆𝐻( ˜(𝐴𝑓 )𝛼) ↾ 𝜏 ] and

𝑓 ↾ 𝛼 = 𝑔 ↾ 𝛼⇔ ℳ𝑓,𝛼 = ℳ𝑔,𝛼.

For every 𝑓 ∈ 2𝜅 there is a bijection 𝐸𝑓 : 𝑑𝑜𝑚(ℳ𝑓 ) → 𝜅, such that for every
𝑓, 𝑔 ∈ 2𝜅 and 𝛼 < 𝜅, if 𝑓 ↾ 𝛼 = 𝑔 ↾ 𝛼, then 𝐸𝑓 ↾ 𝑑𝑜𝑚(ℳ𝑓,𝛼) = 𝐸𝑔 ↾ 𝑑𝑜𝑚(ℳ𝑔,𝛼) (see
[36]). Let us denote by 𝜋 the bijection 𝜋𝜅 from Definition 1.11, define the function
𝒢 by:

𝒢(ℳ𝑓 )(𝛼) =

⎧⎪⎨⎪⎩
1 if 𝛼 = 𝜋(𝑚, 𝑎1, 𝑎2, . . . , 𝑎𝑛) and

ℳ𝑓 |= 𝑄𝑚(𝐸−1
𝑓 (𝑎1), 𝐸−1

𝑓 (𝑎2), . . . , 𝐸−1
𝑓 (𝑎𝑛))

0 otherwise.

To show that 𝐺 : 2𝜅 → 2𝜅, 𝐺(𝑓) = 𝒢(ℳ𝑓 ) is continuous, let [𝜁 ↾ 𝛼] be a basic
open set and 𝜉 ∈ 𝐺−1[[𝜁 ↾ 𝛼]]. There is 𝛽 < 𝜅 such that for all 𝜖 < 𝛼, if 𝜖 =
𝜋(𝑚, 𝑎1, . . . , 𝑎𝑛), then 𝐸−1

𝜉 (𝑎𝑖) ∈ 𝑑𝑜𝑚(ℳ𝜉,𝛽) holds for all 𝑖 ≤ 𝑛. Since for all 𝜂 ∈
[𝜉 ↾ 𝛽] it holds that ℳ𝜂,𝛽 = ℳ𝜉,𝛽 , for any 𝜖 < 𝛼 that satisfies 𝜖 = 𝜋(𝑚, 𝑎1, . . . , 𝑎𝑛)

ℳ𝜂 |= 𝑄𝑚(𝐸−1
𝜂 (𝑎1), 𝐸−1

𝜂 (𝑎2), . . . , 𝐸−1
𝜂 (𝑎𝑛))

if and only if

ℳ𝜉 |= 𝑄𝑚(𝐸−1
𝜉 (𝑎1), 𝐸−1

𝜉 (𝑎2), . . . , 𝐸−1
𝜉 (𝑎𝑛)).

We conclude that 𝐺 is continuous. The result follows from Theorem 4.1. □

For any stationary set 𝑋 ⊆ 𝜅, let us denote by ♢𝑋 the following principle.
There is a sequence {𝑓𝛼 ∈ 𝛼𝛼 | 𝛼 ∈ 𝑋} such that for all 𝐹 ∈ 𝜅𝜅, the set {𝛼 ∈ 𝑋 |

𝑓𝛼 = 𝐹 ↾ 𝛼} is stationary.
For every regular cardinal 𝜇 < 𝜅, let us denote by ♢𝜇 the diamond principle ♢𝑋

when 𝑋 = 𝑆𝜅
𝜇 .

Fact 5.2 (Hyttinen-Kulikov-Moreno, [18] Lemma 2). Assume 𝑇 is a countable
complete classifiable theory over a countable vocabulary. If ♢𝜇 holds, then ∼=𝑇 →˓𝑐

=2
𝜇.

Fact 5.3 (Friedman-Hyttinen-Kulikov, [9] Theorem 77). If a first order countable
complete theory over a countable vocabulary 𝑇 is classifiable, then for all 𝜇 < 𝜅
regular, =2

𝜇 ̸ →˓𝐵
∼=𝑇 .

Corollary 5.4. Let 𝜅 = 𝜆+ = 2𝜆. Suppose 𝑇1 is a countable complete classifiable
theory, and 𝑇2 be a countable complete non-classifiable theory over a countable
vocabulary.

(1) If 𝑇2 is stable unsuperstable, then let 𝜃 = 𝛾 = 𝜔.
(2) If 𝑇2 is unstable, or superstable with the OTOP, then let 𝜃 = 𝜔 and 𝜔 ≤

𝛾 < 𝜅.
(3) If 𝑇2 is superstable with the DOP, then let 𝜃 = c and 𝜔1 ≤ 𝛾 < 𝜅.

If 2𝜃 ≤ 𝜆 = 𝜆𝛾 , then

∼=𝑇1
→˓𝑐 =2

𝛾 →˓𝑐
∼=𝑇2

and =2
𝛾 ̸ →˓𝐵

∼=𝑇1
.

Proof. Since 𝜆𝛾 < 𝜅 = 𝜆+, 𝑐𝑓(𝜆) > 𝛾. By [48] we know that if 𝜅 = 𝜆+ = 2𝜆 and
𝑐𝑓(𝜆) > 𝛾, then ♢𝛾 holds. The result follows from Theorem 5.1, Fact 5.2, and Fact
5.3. □

By putting all these results together, we can prove Theorem A. As we have seen,
the cardinals 𝜀, 𝜃, and 𝛾 are the ones that ensure the existence of the continuous
reduction. Thus different cardinals (𝜀, 𝜃, and 𝛾) generate different reductions, so
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Theorem A can be stated in more detail. Notice that under the assumptions of Fact
1.20, the third item of Theorem 5.5 uses =2

𝛾 for all regular cardinals 𝜔 < 𝛾 < 𝜆.

This contrast with Fact 1.20, in which the statement is about =2
𝜆.

Theorem 5.5 (Borel reducibility Main Gap). Suppose 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 =
𝜆𝜔1 . If 𝑇1 is a countable complete classifiable shallow theory, 𝑇2 is a countable com-
plete classifiable theory not shallow, and 𝑇3 is a countable complete non-classifiable
theory, then

(1) Gap: Classifiable vs Non-classifiable. For 𝑇 = 𝑇1, 𝑇2:

∼=𝑇 →˓𝑐
∼=𝑇3

and ∼=𝑇3
̸ →˓𝐵

∼=𝑇 .

(2) Simple Gap: Classifiable vs Non-classifiable. For 𝑇 = 𝑇1, 𝑇2 there is
𝛾 < 𝜅 such that:

∼=𝑇 →˓𝑐 =2
𝛾 →˓𝑐

∼=𝑇3 and ∼=𝑇3 ̸ →˓𝐵
∼=𝑇 .

In particular

=2
𝛾 ̸ →˓𝐵

∼=𝑇 .

(3) Gap: Classifiable vs Unstable or Superstable. If 𝜆 is such that
𝜆 = 𝜆<𝜆. For all 𝜔 < 𝛾 < 𝜆 regular, 𝑇3 unstable or superstable, and
𝑇 = 𝑇1, 𝑇2:

∼=𝑇 →˓𝑐 =2
𝛾 →˓𝑐

∼=𝑇3 and ∼=𝑇3 ̸ →˓𝐵
∼=𝑇 .

In particular

=2
𝛾 ̸ →˓𝐵

∼=𝑇 .

(4) Gap: Shallow vs Non-shallow. If 𝜅 = ℵ𝜇 is such that ℶ𝜔1
(| 𝜇 |) ≤ 𝜅,

then
∼=𝑇1

→˓𝐵 0𝜅 →˓𝐵
∼=𝑇2

→˓𝑐
∼=𝑇3

.

In particular,

∼=𝑇3 ̸ →˓𝐵
∼=𝑇2 ̸ →˓𝑟 0𝜅 ̸ →˓𝑟

∼=𝑇1 .

(5) General gap: Shallow vs Non-shallow. If 𝑇 is classifiable shallow such
that 𝐼(𝜅, 𝑇 ) < 𝐼(𝜅, 𝑇1), and 𝜅 = ℵ𝜇 is such that ℶ𝜔1

(| 𝜇 |) ≤ 𝜅, then

∼=𝑇 →˓𝐵
∼=𝑇1

→˓𝐵
∼=𝑇2

→˓𝑐
∼=𝑇3

.

In particular

∼=𝑇3 ̸ →˓𝐵
∼=𝑇2 ̸ →˓𝑟

∼=𝑇1 ̸ →˓𝑐
∼=𝑇 .

Proof. (1) It follows from (2).
(2) Notice that 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆𝜔1 imply that for all 𝛼 < 𝜅,

𝛼𝜔1 < 𝜅. The result follows from Corollary 5.4 with 𝛾 ∈ {𝜔, 𝜔1}.
(3) Notice that 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆<𝜆 imply that for all 𝛼 < 𝜅 and

𝛾 < 𝜆, 𝛼𝛾 < 𝜅. The result follows from Corollary 5.4.
(4) It follows from item (1), Fact 1.16, and Proposition 1.17.
(5) It follows from item (3), Fact 1.16, and Proposition 1.17.

□

This solves Friedman-Hyttinen-Kulikov conjecture. The second item of the pre-
vious theorem tells us that depending on the theory 𝑇 , we use 𝛾 = 𝜔 or 𝛾 = 𝜔1 to
construct the reduction =2

𝛾 →˓𝑐
∼=𝑇 . Friedman, Hyttinen, Weinstein, and Moreno

([9] and [35]) asked whether there is 𝛾 < 𝜅 such that =2
𝛾 →˓𝑐

∼=𝑇 holds for any
theory 𝑇 . The previous theorem give us a partial answer to this question.
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Corollary 5.6. Suppose 𝜅 = 𝜆+ = 2𝜆 and 𝜆 = 𝜆𝜔. Let 𝑇1 be a countable complete
classifiable theory and 𝑇2 be a countable complete non-classifiable theory. If 𝑇2 is
unstable, or superstable with the OTOP, or stable unsuperstable, then

∼=𝑇1
→˓𝑐 =2

𝜔 →˓𝑐
∼=𝑇2

and =2
𝜔 ̸ →˓𝐵

∼=𝑇1
.

Corollary 5.7. Suppose 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆𝜔1 . Let 𝑇1 be a countable
complete classifiable theory and 𝑇2 be a countable complete non-classifiable theory.
If 𝜔 < 𝛾 < 𝜆, and 𝑇2 is unstable, or superstable, then

∼=𝑇1
→˓𝑐 =2

𝛾 →˓𝑐
∼=𝑇2

and =2
𝛾 ̸ →˓𝐵

∼=𝑇1
.

A more detail study of the cardinals 𝜀, 𝜃, and 𝛾, might lead to a complete answer
to this question.

Now that we have showed that classifiable theories are less complex than non-
classifiable theories, we can turn our attention to the question “How far apart are
the complexities?”.

5.2. Main Gap Dichotomy. Theorem 1.2 (Shelah’s Main Gap Theorem) tells us
that a non-classifiable theories are more complex than classifiable theories and that
their complexities are far apart. Theorem A is a Borel reducibility counterpart
of the first part, but it does not tell us how far apart are the Borel reducibility
complexity of different theories (except for the Borel non-reduction). To find a
counterpart of “their complexity are far apart”, we have to study how many equiv-
alence relations are strictly between ∼=𝑇1

and ∼=𝑇2
? where 𝑇1 is classifiable and 𝑇2

is not.
We can make the gap as big as we want by using the Dense non-reduction theo-

rem. Recall that Baire measurable is weaker than being Borel, thus also continuous
(Definition 1.13).

Fact 5.8 (Dense non-reduction; Fernandes-Moreno-Rinot, [8] Corollary 6.19). There
exists a cofinality-preserving forcing extension in which for all two disjoint station-
ary subsets 𝑋,𝑌 of 𝜅, =2

𝑋 ̸ →˓𝐵𝑀 =2
𝑌 .

Theorem 5.9. Suppose 𝜅 is inaccessible, or 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆𝜔1 . There
exists a cofinality-preserving forcing extension in which the following holds: If 𝑇1
is classifiable theory and 𝑇2 is a non-classifiable theory. Then there is a regular
cardinal 𝛾 < 𝜅 such that, if 𝑋, 𝑌 ⊆ 𝑆𝜅

𝛾 are stationary and disjoint, then =2
𝑋 and

=2
𝑌 are strictly in between ∼=𝑇1

and ∼=𝑇2
.

Proof. It follows from Theorem 5.1, and Fact 5.8. □

In the previous theorem, we can replace the assumption when 𝜅 is a successor
cardinal by 𝜅 = 𝜅<𝜅 = 𝜆+, 2𝜆 > 2𝜔, and 𝜆<𝜆 = 𝜆. This can be done because the
forcing in Fact 5.8 preserves ♢𝜆, the result follows from Fact 1.22 and Fact 5.8.

The forcing extension from Fact 5.8 is a model in which filter reflection fails (see
[8]). One might think that filter reflection makes the gap smaller, but it is the
opposite. Some cases of filter reflection, imply that the isomorphism relation of
non-classifiable theories is Σ1

1(𝜅)-complete.
A Π1

2-sentence 𝜑 is a formula of the form ∀𝑋∃𝑌 𝜙 where 𝜙 is a first-order sentence
over a relational language ℒ as follows:

∙ ℒ has a predicate symbol 𝜖 of arity 2.
∙ ℒ has a predicate symbol X of arity 𝑚(X).
∙ ℒ has a predicate symbol Y of arity 𝑚(Y).
∙ ℒ has infinitely many predicate symbols (B𝑛)𝑛∈𝜔, each B𝑛 is of arity 𝑚(B𝑛).

Definition 5.10. For sets 𝑁 and 𝑥, we say that 𝑁 sees 𝑥 iff 𝑁 is transitive,
p.r.-closed, and 𝑥 ∪ {𝑥} ⊆ 𝑁 .
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Suppose that a set 𝑁 sees an ordinal 𝛼, and that 𝜑 = ∀𝑋∃𝑌 𝜙 is a Π1
2-sentence,

where 𝜙 is a first-order sentence in the above-mentioned language ℒ. For every
sequence (𝐵𝑛)𝑛∈𝜔 such that, for all 𝑛 ∈ 𝜔, 𝐵𝑛 ⊆ 𝛼𝑚(B𝑛), we write

⟨𝛼,∈, (𝐵𝑛)𝑛∈𝜔⟩ |=𝑁 𝜑

to express that the two hold:

(1) (𝐵𝑛)𝑛∈𝜔 ∈ 𝑁 ;
(2) ⟨𝑁,∈⟩ |= (∀𝑋 ⊆ 𝛼𝑚(X))(∃𝑌 ⊆ 𝛼𝑚(Y))[⟨𝛼,∈, 𝑋, 𝑌, (𝐵𝑛)𝑛∈𝜔⟩ |= 𝜙], where:

∙ ∈ is the interpretation of 𝜖.
∙ 𝑋 is the interpretation of X.
∙ 𝑌 is the interpretation of Y.
∙ For all 𝑛 ∈ 𝜔, 𝐵𝑛 is the interpretation of B𝑛.

We write 𝛼+ for |𝛼|+ and ⟨𝛼,∈, (𝐵𝑛)𝑛∈𝜔⟩ |= 𝜑 for ⟨𝛼,∈, (𝐵𝑛)𝑛∈𝜔⟩ |=𝐻𝛼+ 𝜑.

Definition 5.11. Let 𝜅 be a regular and uncountable cardinal, and 𝑆 ⊆ 𝜅 a
stationary.

Dl*𝑆(Π1
2) asserts the existence of a sequence �⃗� = ⟨𝑁𝛼 | 𝛼 ∈ 𝑆⟩ satisfying the

following:

(1) For every 𝛼 ∈ 𝑆, 𝑁𝛼 is a set of cardinality < 𝜅 that sees 𝛼.
(2) For every 𝑋 ⊆ 𝜅, there exists a club 𝐶 ⊆ 𝜅 such that, for all 𝛼 ∈ 𝐶 ∩ 𝑆,

𝑋 ∩ 𝛼 ∈ 𝑁𝛼.
(3) Whenever ⟨𝜅,∈, (𝐵𝑛)𝑛∈𝜔⟩ |= 𝜑, with 𝜑 a Π1

2-sentence, there are stationarily
many 𝛼 ∈ 𝑆 such that |𝑁𝛼| = |𝛼| and ⟨𝛼,∈, (𝐵𝑛 ∩ (𝛼𝑚(B𝑛)))𝑛∈𝜔⟩ |=𝑁𝛼 𝜑.

Fact 5.12 (Fernandes-Moreno-Rinot, [7] Theorem C). If Dl*𝑆(Π1
2) holds for 𝑆, then

=2
𝑆 is Σ1

1(𝜅)-complete.

Corollary 5.13. Suppose 𝜅 be inaccessible, or 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆𝜔1 . Let
𝜇0 = 𝜔, 𝜇1 = 𝜔1, and 𝑆𝑖 = {𝛼 < 𝜅 | 𝑐𝑓(𝛼) = 𝜇𝑖}. If Dl*𝑆𝑖

(Π1
2) holds for all 𝑖 ∈ 2,

and 𝑇 is a countable complete non-classifiable theory, then ∼=𝑇 is Σ1
1(𝜅)-complete.

Fact 5.14 (Fernandes-Moreno-Rinot, [8] Lemma 4.10 and Proposition 4.14). There
exists a < 𝜅-closed 𝜅+-cc forcing extension in which Dl*𝑆(Π1

2) holds for all 𝑆 ⊆ 𝜅
stationary set (𝑆 stationary in 𝑉 ).

Corollary 5.15. Let 𝜅 be inaccessible, or 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆𝜔1 . There
exists a < 𝜅-closed 𝜅+-cc forcing extension in which for all countable complete
non-classifiable theory 𝑇 , ∼=𝑇 is Σ1

1(𝜅)-complete.

We proceed to prove Theorem B.

Theorem 5.16 (Main Gap Dichotomy). Let 𝜅 be inaccessible, or 𝜅 = 𝜆+ = 2𝜆 and
2c ≤ 𝜆 = 𝜆<𝜔1 . There exists a < 𝜅-closed 𝜅+-cc forcing extension in which for any
countable first-order theory in a countable vocabulary (not necessarily complete), 𝑇 ,
one of the following holds:

∙ ∼=𝑇 is ∆1
1(𝜅).

∙ ∼=𝑇 is Σ1
1(𝜅)-complete.

Proof. Let us show that in the forcing extension of Corollary 5.15 the dichotomy
holds.

From Fact 1.14 (2), if a complete theory 𝑇 is classifiable, then ∼=𝑇 is ∆1
1(𝜅). So

for a complete countable theory 𝑇 the result follows from Corollary 5.15. Suppose
𝑇 is not a complete theory. Let 𝜏 be the vocabulary of 𝑇 and {𝑇𝛼}𝛼<2𝜔 be the set
of all the complete theories in 𝜏 that extend 𝑇 . Notice that ∼=𝑇 =

⋂︀
𝛼<2𝜔

∼=𝑇𝛼
,

therefore if ∼=𝑇𝛼
is a ∆1

1(𝜅) equivalence relation for all 𝛼 < 𝜅, then so is ∼=𝑇 since
2𝜔 < 𝜅.
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Suppose 𝑇 ′ is a complete countable theory in 𝜏 that extends 𝑇 such that ∼=𝑇 ′ is
not a ∆1

1(𝜅) equivalence relation. By Fact 1.14 (2), 𝑇 ′ is a non-classifiable countable
theory. By Corollary 5.15, ∼=𝑇 ′ is a Σ1

1(𝜅)-complete equivalence relation. It is easy
to see that the map ℱ : 𝜅𝜅 → 𝜅𝜅

ℱ(𝜂) =

{︃
𝜂 if 𝒜𝜂 |= 𝑇 ′

𝜉 otherwise.

where 𝜉 is a fixed element of 𝜅𝜅 such that 𝒜𝜉 ̸|= 𝑇 ′, is a Borel reduction of ∼=𝑇 ′ to
∼=𝑇 , see [19] Theorem 4.10.

□

In [19] it was showed that there is a model in which there is a theory 𝑇 such
that ∼=𝑇 is neither ∆1

1(𝜅), nor Σ1
1(𝜅)-complete. Thus, Theorem 5.16 is not provable

in ZFC.
As we have seen the equivalence relations =2

𝑆 play an important role in the Main
Gap Dichotomy. Even thought the Main Gap Dichotomy is not a theorem of ZFC,
the isomorphism relation of a non-classifiable theory is still very high in the Borel
reducibility hierarchy, when it is not ∆1

1(𝜅).

5.3. Few equivalence classes. In the introduction Shelah’s Main Gap was pre-
sented as a milestone in the program of the spectrum problem at uncountable
cardinals. This program started with the study of categoricity and ended with
Hart-Hrushovski-Laskowski theorem with all the possible values for the spectrum
function [Theorem 61 [14]]. Mangraviti and Motto Ros studied the categoricity in
GDST, Fact 1.19 characterizes uncountable categorical theories as those for which
∼=𝑇 is a clopen. In their article, Mangraviti and Motto Ros show that there is no
theory 𝑇 such that ∼=𝑇 is open not closed, due to the following result.

Fact 5.17 (Folklore; [32], Proposition 2.17). Let 𝐸 be and equivalence relation on
𝜅𝜅. 𝐸 is open if and only if 𝐸 is clopen.

Recall ∼=𝜇
𝑇 and 0𝜚 from Section 1. We know that if ∼=𝑇 has 𝜚 ≤ 𝜅 equivalence

classes, then ∼=𝑇 and 0𝜚 are Borel bireducible. It is clear that 0𝜚 is more simple
than ∼=𝑇 . Thus, to determine which equivalence relation is more complex we would
need to use another type of reduction.

Lemma 5.18. Suppose 𝜅 > 2𝜔 and 𝑇 is a countable first-order theory in a countable
vocabulary (not necessarily complete) such that ∼=𝑇 has 𝜚 ≤ 𝜅 equivalence classes.
Then

∼=𝑇 →˓𝐵 0𝜚 and 0𝜚 →˓𝐿
∼=𝑇 .

Even more, if 𝑇 is not categorical then ∼=𝑇 ̸ →˓𝑐 0𝜚.

Proof. Let 𝑇 ′ be a complete theory extending 𝑇 , then ∼=𝑇 ′ →˓𝐵
∼=𝑇 . Thus ∼=𝑇 ′ →˓𝑟

∼=𝑇 and ∼=𝑇 ′ has at most 𝜚 ≤ 𝜅 equivalence classes. By Fact 1.2 and Fact 1.14, 𝑇 ′ is
classifiable and shallow, and ∼=𝑇 ′ is 𝜅-Borel. Therefore for all the complete theories,
𝑇 ′, that extend 𝑇 , ∼=𝑇 ′ is 𝜅-Borel. Let 𝜏 be the vocabulary of 𝑇 and {𝑇𝛼}𝛼<2𝜔 be
the set of all the complete theories in 𝜏 that extend 𝑇 . Since ∼=𝑇 =

⋂︀
𝛼<2𝜔

∼=𝑇𝛼
, ∼=𝑇

is a 𝐵𝑜𝑟𝑒𝑙 equivalence relation. By Proposition 1.17, we conclude that ∼=𝑇 →˓𝐵 0𝜚.
Since ∼=𝑇 has 𝜚 equivalence classes, then there is a sequence ⟨𝜁𝑖 | 𝑖 < 𝜚⟩ such

that for all 𝜂 ∈ 𝜅𝜅, there is 𝑖 < 𝜚 such that 𝜂 ∼=𝑇 𝜁𝑖 and for all 𝑖, 𝑗 < 𝜚,

𝜁𝑖 ∼=𝑇 𝜁𝑗 ⇔ 𝑖 = 𝑗.

The function ℱ : 𝜅𝜅 → 𝜅𝜅, ℱ(𝜂) = 𝜁𝑖 where 𝜂(0) = 𝑖, is a reduction of 0𝜚 to ∼=𝑇 .
Clearly ℱ is Lipschitz. So 0𝜚 →˓𝐿

∼=𝑇 .
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Notice that 0𝜚 is open. Let us suppose, towards contradiction, that 𝑇 is not
categorical and ∼=𝑇 →˓𝑐 0𝜚. By Proposition 1.18, ∼=𝑇 is open. From Fact 1.19 and
Fact 5.17, 𝑇 is categorical, a contradiction. □

From Hart-Hrushovski-Laskowski [Theorem 6.1 [14]] we know that there are
classifiable shallow theories that are not 𝜅-categorical. Thus 𝜚 = 𝐼(𝜅, 𝑇 ) could
have values different from 0 and 1, below 𝜅, when ℵ𝜇 = 𝜅 = 𝜆+ = 2𝜆 is such that
ℶ𝜔1

(| 𝜇 |) ≤ 𝜅.
Notice that the only property of ∼=𝑇 that we used in the proof of 0𝜚 →˓𝐿

∼=𝑇 ,
was that it has 𝜚 ≤ 𝜅 equivalence classes. Thus for all equivalence relation 𝐸 with
𝜚 ≤ 𝜅 equivalence classes, 0𝜚 →˓𝐿 𝐸. So for all 𝜚1 < 𝜚2 ≤ 𝜅, 0𝜚1 →˓𝐿 0𝜚2 .

We can improve the general gap Shallow and Non-shallow of Theorem 5.5.

Theorem 5.19 (General gap Shallow and Non-shallow). Suppose ℵ𝜇 = 𝜅 = 𝜆+ =
2𝜆 is such that ℶ𝜔1

(| 𝜇 |) ≤ 𝜅, and 2c ≤ 𝜆 = 𝜆𝜔1 . Let 𝑇1 be a countable complete
classifiable shallow theory with 𝜚 = 𝐼(𝜅, 𝑇1), 𝑇2 be a countable complete classifiable
theory non-shallow, and 𝑇3 be a countable complete non-classifiable theory. If 𝑇 is
classifiable shallow such that 1 < 𝐼(𝜅, 𝑇 ) < 𝐼(𝜅, 𝑇1), then

∼=𝑇 →˓𝐵 0𝜚 →˓𝐿
∼=𝑇1

→˓𝐵 0𝜅 →˓𝐿
∼=𝑇2

→˓𝑐
∼=𝑇3

.

In particular

∼=𝑇3 ̸ →˓𝐵
∼=𝑇2 ̸ →˓𝑟 0𝜅 ̸ →˓𝑟

∼=𝑇1 ̸ →˓𝑐 0𝜚 ̸ →˓𝑟
∼=𝑇 .

We can study the gap between a classifiable shallow and a classifiable non-
shallow. Let us study Question 1.9 (Mangraviti-Motto Ros question [Question
6.9 [32]]).

By Proposition 1.17 and Fact 1.18, we know that if 𝐸1 is a 𝜅-Borel equivalent
relation with at most 𝜅 equivalence classes, then for all 𝐸0

𝐸0 →˓𝐵 𝐸1 ⇔ 𝐸0 →˓𝑟 𝐸1 and 𝐸0 is 𝜅-Borel.

For all 𝛼 < 𝛽 cardinals, we denote by 𝐶𝑎𝑟𝑑(𝛼, 𝛽) the set of cardinals in the interval
(𝛼, 𝛽) ordered by cardinality. We define 𝐶𝑎𝑟𝑑[𝛼, 𝛽], 𝐶𝑎𝑟𝑑[𝛼, 𝛽), and 𝐶𝑎𝑟𝑑(𝛼, 𝛽]
in a similar way. Thus, we can understand the Borel reducibility between 𝜅-Borel
equivalence relation with at most 𝜅 equivalence classes as 𝐶𝑎𝑟𝑑[1, 𝜅].

Under the assumptions CS, if 𝑇1 and 𝑇2 are such that 𝐼(𝜅, 𝑇1) < 𝐼(𝜅, 𝑇2) < 𝜅,
then by Fact 1.2 and Fact 1.14 ∼=𝑇1 and ∼=𝑇2 are 𝜅-Borel. By Fact 1.18, there are
exactly 𝐶𝑎𝑟𝑑(𝐼(𝜅, 𝑇1), 𝐼(𝜅, 𝑇2)) equivalence relations strictly in between ∼=𝑇1 and
∼=𝑇2

(with the Borel reducibility). On the other hand, if we use Lipschitz reduction,
then there is a copy of 𝐶𝑎𝑟𝑑(𝐼(𝜅, 𝑇1), 𝐼(𝜅, 𝑇2)] in between ∼=𝑇1

and ∼=𝑇2
.

Notice that if 𝑇1 a classifiable shallow theory and 𝑇2 is a classifiable non-shallow,
then the gap between ∼=𝑇1

and ∼=𝑇2
contains a copy of 𝐶𝑎𝑟𝑑(𝐼(𝜅, 𝑇1), 𝜅]. An under-

standing of the gap between the counting 0-classes equivalence relations, 0𝜚, will
give us a more detail picture of the gap between the isomorphism relations of clas-
sifiable shallow theories and classifiable non-shallow theories.By Theorem 5.19 we
know that some of those gaps are not empty by Borel reduction and not continuous
reductions, e.g. there is an equivalence relation 𝐸 such that

0𝜚1 →˓𝐿 𝐸 →˓𝐵 0𝜚2

and

0𝜚2
̸ →˓𝑟 𝐸 ̸ →˓𝑐 0𝜚1

.

Understanding the gap between 0𝜅 and the isomorphism relation of classifiable the-
ories, would give us information about the gap in Mangraviti-Motto Ros question.
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5.4. On Morley’s Conjecture. Morely’s conjecture tell us that the spectrum
function is increasing. As it was discussed before, Morley’s conjecture implies that
for all 𝜇 < 𝜅 and theory 𝑇 , ∼=𝜇

𝑇 →˓𝐵
∼=𝑇 holds when ∼=𝜇

𝑇 is 𝜅-Borel. This can be
extended to all theories and improved to continuous reductions.

Proposition 5.20. Let 𝜔 < 𝜇 < 𝛿 ≤ 𝜅 be cardinals. For all first-order countably
theory in a relational countable language 𝑇 , not necessarily complete,

∼=𝜇
𝑇 →˓𝑐

∼=𝛿
𝑇 .

Proof. Let 𝜔 < 𝜇 < 𝛿 < 𝜅 be cardinals and 𝑇 be a first-order countably complete
theory in a relational countable language. Let 𝜚 be the number of equivalence
classes of ∼=𝜇

𝑇 . By Fact 1.3, there are sequences ⟨𝜉𝑖 | 𝑖 < 𝜚⟩ and ⟨𝜁𝑖 | 𝑖 < 𝜚⟩ such

that for all 𝑖 ̸= 𝑗, 𝜉𝑖 ̸∼=𝜇
𝑇 𝜉𝑗 , 𝜁𝑖 ̸∼=𝛿

𝑇 𝜁𝑗 , and for all 𝜂 ∈ 𝜅𝜅 there is 𝑖 < 𝜚 such that
𝜉𝑖 ∼=𝜇

𝑇 𝜂. Let us define 𝐹 : 𝜅𝜅 → 𝜅𝜅 by 𝐹 (𝜂) = 𝜁𝑖 where 𝑖 < 𝜚 is such that 𝜉𝑖 ∼=𝜇
𝑇 𝜂.

It is clear that 𝐹 is a reduction from ∼=𝜇
𝑇 to ∼=𝛿

𝑇 .
Let us show that 𝐹 is continuous. Let 𝜁, 𝜂 ∈ 𝜅𝜅 and 𝛽 < 𝜅 be such that

𝐹 (𝜂) ∈ [𝜁 ↾ 𝛽]. Notice that for all 𝜉 ∈ [𝜂 ↾ 𝜇], 𝒜𝜂↾𝜇 = 𝒜𝜉↾𝜇. By the way 𝐹 was
defined, for all 𝜉 ∈ [𝜂 ↾ 𝜇], 𝐹 (𝜂) = 𝐹 (𝜉). Thus, for all 𝜉 ∈ [𝜂 ↾ 𝜇], 𝐹 (𝜉) ∈ [𝜁 ↾ 𝛽] and
we conclude that 𝐹 is continuous.

□

Notice that the only property of ∼=𝛿
𝑇 that we used was that it has at least 𝜚

different equivalence classes.
We actually proved that ∼=𝜇

𝑇 →˓𝑐 𝐸, where ∼=𝜇
𝑇 had 𝜚 equivalence classes and 𝐸

is an equivalence relation with at least 𝜚 equivalence classes. In particular, since
𝜅<𝜅 = 𝜅, for any first-order countably complete theory in a relational countable
language 𝑇 and 𝜇 < 𝜅, ∼=𝜇

𝑇 →˓𝑐 𝐸, for:

∙ 𝐸 = 0𝜃, 𝜃 ≥ 𝜚.
∙ ∼=𝑇 ′ , where 𝑇 ′ is not a classifiable shallow theory.
∙ 𝑖𝑑2, the identity relation of 2𝜅.

Notice that 0𝜚 and ∼=𝜇
𝑇 are continuously bireducible, 0𝜚 →˓𝐿

∼=𝜇
𝑇 , and ∼=𝜇

𝑇 is open.
Therefore, if 𝑇 and 𝑇 ′ are theories such that ∼=𝜇

𝑇 and ∼=𝜇
𝑇 ′ have the same number of

equivalence classes, then ∼=𝜇
𝑇 and ∼=𝜇

𝑇 ′ are continuous bireducible. In particular that
if 𝜇 < 𝜅, 𝑇 is a classifiable non-shallow theory and 𝑇 ′ is non-classifiable theory,
then by Fact 1.2, ∼=𝜇

𝑇 and ∼=𝜇
𝑇 ′ are continuous bireducible. On the other hand, we

can find the isomorphism relation of classifiable non-shallow theories in between
∼=𝜆

𝑇 and ∼=𝑇 , due to Fact 1.2 and Theorem 5.5.

Corollary 5.21. Suppose 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆<𝜔1 . If 𝑇1 is a classifiable
non-shallow theory and 𝑇2 is a non-classifiable theory, then

∼=𝜆
𝑇2

→˓𝑐
∼=𝑇1

→˓𝑐
∼=𝑇2

.

In the generalize Baire space 𝜅𝜅 we can say much about the isomorphism relation
of models of size 𝜅, ∼=𝑇 , but very few about the isomorphism relation of models of
size 𝜇 less than 𝜅, ∼=𝜇

𝑇 . Nevertheless, the isomorphism relation of models of size
less than 𝜅 can be used to describe the gap in more detail, under the assumptions
of Fact 1.16.

Proposition 5.22. Let 𝜅 = ℵ𝛾 be such that ℶ𝜔1
(| 𝛾 |) ≤ 𝜅 and 𝜅 = 𝜆+ =

2𝜆. Suppose 𝑇1 is a classifiable shallow, 𝑇2 classifiable non-shallow, and 𝑇3 non-
classifiable. Then

∼=𝑇1 →˓𝐵 0𝜅 →˓𝐿
∼=𝜆

𝑇3
→˓𝑐

∼=𝑇2

and
∼=𝑇2

̸ →˓𝑟
∼=𝜆

𝑇3
̸ →˓𝑟

∼=𝑇1
.
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Proof. It follows from Fact 1.2, Theorem 5.19, and Proposition 5.20. □

Let us study the reducibility between the identity and the isomorphism relations.
This was studied by Friedman, Hyttinen, and Weinstein for 𝜅 inaccessible.

Fact 5.23 (Friedman-Hyttinen-Kulikov, [9] Theorem 36). Assume that 𝜅 is strongly
inaccessible and 𝑇 is a countable theory. If the number of equivalence classes of ∼=𝑇

is greater than 𝜅, then
𝑖𝑑2 →˓𝑐

∼=𝑇 .

Corollary 5.24. Assume that 𝜅 is strongly inaccessible, 𝑇 is a countable theory,
and 𝜇 < 𝜅 be a cardinal. If the number of equivalence classes of ∼=𝑇 is greater than
𝜅, then

∼=𝜇
𝑇 →˓𝑐 𝑖𝑑2 →˓𝑐

∼=𝑇 .

To study the case of 𝜅 successor, we need to introduce the equivalence relation
𝐸<𝜅

0 , the equivalence modulo bounded. Let us define 𝐸<𝜅
0 as:

𝐸<𝜅
0 := {(𝜂, 𝜉) ∈ 2𝜅 × 2𝜅 | ∃𝛼 < 𝜅 [∀𝛽 > 𝛼 (𝜂(𝛽) = 𝜉(𝛽)])}.

Fact 5.25 (Friedman-Hyttinen-Kulikov, [9] Theorem 60). Suppose 𝑋 ⊆ 𝜅 a sta-
tionary set such that ♢𝑋 holds. Then 𝐸<𝜅

0 →˓𝑐 =2
𝑋 .

Corollary 5.26. Suppose 𝜅 = 𝜆+ = 2𝜆 and 𝜆 = 𝜆𝜔. If 𝑇 is unstable, or superstable
with the OTOP, or stable unsuperstable, then

𝐸<𝜅
0 →˓𝑐

∼=𝑇 .

If 𝜆 also satisfies 2c ≤ 𝜆 = 𝜆𝜔1 , then

𝐸<𝜅
0 →˓𝑐

∼=𝑇

holds for 𝑇 superstable with the DOP.

Proof. Since 𝜆𝛾 < 𝜅 = 𝜆+ implies 𝑐𝑓(𝜆) > 𝛾, by [48] we know that if 𝜅 = 𝜆+ = 2𝜆

and 𝑐𝑓(𝜆) > 𝛾, then ♢𝛾 holds. The corollary follows from the previous fact and
Theorem 5.1. □

Fact 5.27 (Friedman-Hyttinen-Kulikov, [9] Theorem 34). ∙ 𝐸<𝜅
0 is 𝜅-Borel.

∙ 𝐸<𝜅
0 ̸ →˓𝐵 𝑖𝑑2.

∙ 𝑖𝑑2 →˓𝑐 𝐸<𝜅
0 .

Lemma 5.28. Let 𝜅 = 𝜆+ = 2𝜆 and 2c ≤ 𝜆 = 𝜆<𝜔1 . If 𝑇 is a non-classifiable
theory, then

𝑖𝑑2 →˓𝑐 𝐸<𝜅
0 →˓𝑐

∼=𝑇

and
∼=𝑇 ̸ →˓𝐵 𝐸<𝜅

0 ̸ →˓𝐵 𝑖𝑑2

Proof. The only statement that doesn’t follows directly from the previous results
is ∼=𝑇 ̸ →˓𝐵 𝐸<𝜅

0 . This follows from Fact 1.14, Fact 1.18, and Fact 5.27 item 1. □

Corollary 5.29. suppose 𝜅 = 𝜆+ = 2𝜆, and 2c ≤ 𝜆 = 𝜆<𝜔1 . If 𝑇 is a non-
classifiable theory, then

∼=𝜆
𝑇 →˓𝑐 𝑖𝑑2 →˓𝑐 𝐸<𝜅

0 →˓𝑐
∼=𝑇

and
∼=𝑇 ̸ →˓𝐵 𝐸<𝜅

0 ̸ →˓𝐵 𝑖𝑑2 ̸ →˓𝑟
∼=𝜆

𝑇 .

Corollary 5.21, Proposition 5.22 and Corollary 5.29 prove Theorem C. The pre-
vious results can be extended to non-complete theories, by using the ideas in the
proof of Theorem B and Morley’s conjecture for not complete theories (see [47]
page 642).
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6. Backstage

We will finish this article with some consideration about the methodology and
ideas developed for the proof of the Borel reducibility Main Gap. This section is
dedicated to explain the ideas behindthe different methods and machinery presented
in the previous sections.

6.1. The 𝐹𝜙
𝜔 isolation. The notion of 𝜅-colorable linear order was introduced in

[37] to construct models of unsuperstable theories and prove Fact 1.24. The main
difficulty in the proof of Fact 1.24 was to merge Shelah’s ordered trees from [46] and
Hyttinen-Kulikov’s coloured trees from [17], i.e. construct ordered coloured trees.
This can be easily done by using a saturated linear order (when a saturated model
exists). Unfortunately DLO is an unstable theory, thus a saturated model of DLO
is not (< 𝜅)-stable. A saturated model of DLO is not useful for our purpose since
(< 𝜅)-stable plays an important role in the proof of the isomorphism theorem of
Ehrenfeucht-Mostowski models (Theorem 4.23).

The idea behind 𝜅-colorable is that any realizable type over a small set, is realized
by 𝜅 many elements. 𝜅-colorable give us enough saturation to merge Shelah’s trees
and Hyttinen-Kulikov’s trees, and at the same time it behaves nice with (< 𝜅)-
stability.

Let us study the relation between 𝜅-colorable and saturation.We will use the
axiomatic approach of F-saturation from [47] Chapter 4.

Let ∆ be a set of formulas of ℒ, we denote 𝑆𝑚
Δ (𝐴) the set of all consistent types

of ∆-formulas over 𝐴 in 𝑚 variables and 𝑆Δ(𝐴) = ∪𝑚<𝜔𝑆
𝑚
Δ (𝐴). We omit ∆ when

we refer to all the formulas of ℒ. In [47] Chapter 4 Shelah defined an isolation
notion in the following way.

Definition 6.1 (Isolation notion). Let ℳ be the monster model, and 𝜆 be an
infinite cardinal. Let 𝑃𝜆 be the class of pairs (𝑝,𝐴) such that |𝐴| < 𝜆 and for
some 𝐵 ⊇ 𝐴, 𝐵 ⊆ ℳ and 𝑝 ∈ 𝑆(𝐵). We say that 𝐹𝜆 ⊆ 𝑃𝜆 is an isolation notion
if it satisfies the axioms below. We write (𝑡𝑝(𝐶,𝐵,ℳ), 𝐴) ∈ 𝐹𝜆 if for all 𝑐 ∈ 𝐶,
(𝑡𝑝(𝑐,𝐵,ℳ), 𝐴) ∈ 𝐹𝜆.

I. 𝐹𝜆 is closed under the change of variables. If 𝑝 ∈ 𝑆(𝐵), 𝐴 ⊆ 𝐵 and

𝑞 = {𝜙(𝑦0, . . . , 𝑦𝑚; �̄�) | 𝜙(𝑥𝜎(0), . . . , 𝑥𝜎(𝑚); �̄�) ∈ 𝑝}

(where 𝜎 is a permutation of {0, . . . ,𝑚}), then (𝑝,𝐴) ∈ 𝐹𝜆 if and only if
(𝑞,𝐴) ∈ 𝐹𝜆.

II. 𝐹𝜆 is closed under automorphisms. For all automorphism 𝑓 , (𝑝,𝐴) ∈ 𝐹𝜆

holds if and only if (𝑓(𝑝), 𝑓 [𝐴]) ∈ 𝐹𝜆.
III. If 𝑎 ∈ 𝐴 ⊆ 𝐵 and |𝐴| < 𝜆, then (𝑡𝑝(𝑎,𝐵,ℳ), 𝐴) ∈ 𝐹𝜆.
IV. If 𝐴 ⊆ 𝐵 ⊆ 𝐶 ⊆ 𝑑𝑜𝑚(𝑝), |𝐵| < 𝜆 and (𝑝,𝐴) ∈ 𝐹𝜆, then (𝑝 ↾ 𝐶,𝐵) ∈ 𝐹𝜆.
V. If (𝑡𝑝(𝑎 ∪ 𝑏, 𝐵,ℳ), 𝐴) ∈ 𝐹𝜆, then (𝑡𝑝(𝑎,𝐵,ℳ), 𝐴) ∈ 𝐹𝜆.

VI. If |𝐶| < 𝜆 and (𝑡𝑝(𝑎∪𝐶,𝐵,ℳ), 𝐴) ∈ 𝐹𝜆, then (𝑡𝑝(𝑎,𝐵∪𝐶,ℳ), 𝐴∪𝐶) ∈ 𝐹𝜆.
VII. If 𝐴,𝐵 ⊆ 𝐶, (𝑡𝑝(𝑏, 𝐶 ∪ 𝑎,ℳ), 𝐵) ∈ 𝐹𝜆 and (𝑡𝑝(𝑎,𝐶ℳ), 𝐴) ∈ 𝐹𝜆, then

(𝑡𝑝(𝑎,𝐶 ∪ 𝑏,ℳ), 𝐴) ∈ 𝐹𝜆.
VIII. If 𝐴 ⊆ 𝐵, (𝑡𝑝(𝑎,𝐵 ∪ 𝐶,ℳ), 𝐴 ∪ 𝐶) ∈ 𝐹𝜆 and (𝑡𝑝(𝐶,𝐵,ℳ), 𝐴) ∈ 𝐹𝜆, then

(𝑡𝑝(𝑎 ∪ 𝐶,𝐵,ℳ), 𝐴) ∈ 𝐹𝜆.
IX. If ⟨𝐵𝑖 | 𝑖 < 𝛿⟩ is an increasing sequence of sets, 𝑝 ∈ 𝑆(

⋃︀
𝑖<𝛿 𝐵𝑖) and for all

𝑖 < 𝛿, (𝑝 ↾𝐵𝑖, 𝐴) ∈ 𝐹𝜆, then (𝑝,𝐴) ∈ 𝐹𝜆.
X. If (𝑝,𝐴) ∈ 𝐹𝜆 and 𝑑𝑜𝑚(𝑝) ⊆ 𝐵, then there are 𝐴′ ⊆ 𝐵 and 𝑞 ∈ 𝑆(𝐵) such

that 𝑝 ⊆ 𝑞 and (𝑞, 𝐴′) ∈ 𝐹𝜆.

An isolation notion provides us with a notion of saturation and construction.
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Definition 6.2. We say that (𝐴, (𝑎𝑖, 𝐵𝑖)𝑖<𝛼) is an 𝐹𝜆-construction over 𝐴 if for
all 𝑖 < 𝛼, (𝑡𝑝(𝑎𝑖, 𝐴𝑖,ℳ), 𝐵𝑖) ∈ 𝐹𝜆, where 𝐴𝑖 = 𝐴 ∪

⋃︀
𝑗<𝑖 𝑎𝑗 . We say that 𝐶 is

𝐹𝜆-constructible over 𝐴 if there is an 𝐹𝜆-construction (𝐴, (𝑎𝑖, 𝐵𝑖)𝑖<𝛼) over 𝐴 such
that 𝐶 = 𝐴 ∪

⋃︀
𝑖<𝛼 𝑎𝑖.

Definition 6.3. We say that 𝐶 is (𝐹𝜆, 𝜍)-saturated if for all 𝐵 ⊆ 𝐶 of size smaller
than 𝜍 and 𝑝 ∈ 𝑆(𝐵) the following holds:

If 𝐴 is such that (𝑝,𝐴) ∈ 𝐹𝜆, then 𝑝 is realized in 𝐶.

We say that 𝐶 is 𝐹𝜆-saturated if it is (𝐹𝜆, |𝐶|+)-saturated.

Definition 6.4. We say that 𝐶 is 𝐹𝜆-primary over 𝐴 if it is 𝐹𝜆-constructible over
𝐴 and 𝐹𝜆-saturated.

We are interested on 𝐹𝜆-primary models, unfortunately if 𝜆 is a regular cardinal,
then 𝐹𝜆-primary sets over 𝐴 are unique up to isomorphism over 𝐴. We know from
[37] that there are at least two non-isomorphic models of DLO that are 𝜅-colorable.
Thus 𝜅-colorable is not an 𝐹𝜆-saturation notion. Nevertheless, it comes from a
weak version of isolation.

Definition 6.5. Let 𝜙(𝑥, 𝑦) ∈ 𝑏𝑠, we define 𝐹𝜙
𝜔 in the following way. Let |𝐵| < 𝜅

and 𝑝 ∈ 𝑆𝑏𝑠(𝐵), (𝑝,𝐴) ∈ 𝐹𝜙
𝜔 if and only if 𝐴 ⊆ 𝐵, 𝐴 is finite, and there is 𝑎 ∈ 𝐴

such that
{𝜙(𝑥, 𝑎), 𝑥 = 𝑎} ∩ 𝑝 ̸= ∅ & 𝑎 |= 𝑝 ↾𝐵∖{𝑎}.

It is easy to see that 𝐹𝜙
𝜔 satisfies the first axioms of Definition 6.1. But in the

case when 𝜙(𝑥, 𝑦) is 𝑥 > 𝑦, then 𝐹𝜙
𝜔 does not satisfies Axiom V. It is clear that

if 𝜙(𝑥, 𝑎) ∪ 𝑡𝑝𝑏𝑠(𝑎,𝐵,ℳ) is consistent, then (𝜙(𝑥, 𝑎) ∪ 𝑡𝑝𝑏𝑠(𝑎,𝐵,ℳ), {𝑎}) ∈ 𝐹𝜙
𝜔 .

We define 𝐹𝜙
𝜔 -constructible, 𝐹𝜙

𝜔 -saturated, and 𝐹𝜙
𝜔 -primary following the ideas of

Definitions 6.2, 6.3, and 6.4.

Definition 6.6. A sequence (𝐴, (𝑎𝑖, 𝐵𝑖)𝑖<𝛼) is an 𝐹𝜙
𝜔 -construction over 𝐴 if for all

𝑖 < 𝛼, (𝑡𝑝𝑏𝑠(𝑎𝑖, 𝐴𝑖), 𝐵𝑖) ∈ 𝐹𝜙
𝜔 where 𝐴𝑖 = 𝐴 ∪

⋃︀
𝑗<𝑖 𝑎𝑗 .

𝐶 is 𝐹𝜙
𝜔 -constructible over 𝐴 if there s an 𝐹𝜙

𝜔 -construction over 𝐴 such that
𝐶 = 𝐴 ∪

⋃︀
𝑗<𝛼 𝑎𝑗 .

Definition 6.7. 𝐶 is (𝐹𝜙
𝜔 , 𝜍)-saturated if for all 𝐵 ⊆ 𝐶 of size smaller than 𝜍, and

𝑝 ∈ 𝑆𝑏𝑠(𝐵), (𝑝,𝐴) ∈ 𝐹𝜙
𝜔 implies that 𝑝 is realized in 𝐶.

Definition 6.8. 𝐶 is (𝐹𝜙
𝜔 , 𝜍)-primary over 𝐴 if it it is 𝐹𝜙

𝜔 -constructible over 𝐴 and
(𝐹𝜙

𝜔 , 𝜍)-saturated.

Let 𝐼 be the order constructed in Section 2 in the case 𝜀 = 𝜃 = 𝜔. Let us define
the linear order 𝐽 by

𝐽 = {𝑓 ∈ 𝐼 | 𝑓 : 𝜔 → ({0} × ℐ0) ∪ (𝜅× {𝜏})},
𝐽 𝑖 = 𝐽 ∩ 𝐼𝑖 and 𝐽 𝑖

𝛼 = 𝐽 ∩ 𝐼𝑖𝛼. Clearly 𝐽0 = 𝐼0.

Lemma 6.9. 𝐽 is (𝐹𝜙
𝜔 , 𝜅)-primary over 𝐼0, for 𝜙(𝑥, 𝑦) := “𝑦 > 𝑥”.

Proof.

Claim 6.9.1. 𝐽 is 𝐹𝜙
𝜔 -constructible over 𝐼0.

Proof. Let us show that there is an 𝐹𝜙
𝜔 -construction over 𝐼0. Let 𝑗 ≥ 0 and {𝑎𝑗𝑖 |

𝑖 < 𝜅} be an enumeration of 𝐽𝑗+1∖𝐽𝑗 . Since 𝜀 = 𝜔, for all 𝑖 < 𝜅, 𝑑𝑝(𝑎𝑗𝑖 ) < 𝜔. Thus

the rode from 𝐼0 to 𝑎𝑗𝑖 is finite and bigger than 0, ⟨𝜈𝑖𝑛 | 𝑛 ≤ 𝑚 = 𝑑𝑝(𝑎𝑗𝑖 )⟩. Let

𝑏𝑗𝑖 = 𝜈𝑖𝑚−1, by Fact 2.19,

𝑎𝑗𝑖 |= 𝑡𝑝𝑏𝑠(𝑏
𝑗
𝑖 , 𝐽

𝑜(𝑎𝑗
𝑖 )∖(𝐺𝑒𝑛(𝑎𝑗𝑖 ) ∪ {𝑏𝑗𝑖})) ∪ {𝑏𝑗𝑖 > 𝑥}.
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Since 𝑎𝑗𝑖 ∈ 𝐽𝑗+1∖𝐽𝑗 , 𝑜(𝑎𝑗𝑖 ) = 𝑗 + 1 and

𝑎𝑗𝑖 |= 𝑡𝑝𝑏𝑠(𝑏
𝑗
𝑖 , 𝐽

𝑗+1∖(𝐺𝑒𝑛(𝑎𝑗𝑖 ) ∪ {𝑏𝑗𝑖})) ∪ {𝑏𝑗𝑖 > 𝑥}.

In particular

𝑡𝑝𝑏𝑠(𝑎
𝑗
𝑖 , 𝐽

𝑗+1∖{𝑎𝑗𝑖}) = 𝑡𝑝𝑏𝑠(𝑏
𝑗
𝑖 , 𝐽

𝑗+1∖{𝑎𝑗𝑖 , 𝑏
𝑗
𝑖}) ∪ {𝑏𝑗𝑖 > 𝑥}.

Recall that if 𝑖 is a limit ordinal, then

𝐽 𝑖 =
⋃︁
𝑗<𝑖

𝐽𝑗 .

Let 𝛼 < 𝜅+ be the order type of 𝜅× 𝜅, there is ⟨𝑐𝑖 | 𝑖 < 𝛼⟩ an enumeration of 𝐽∖𝐼0
such that (𝐼0, (𝑐𝑖, 𝐵𝑖)𝑖<𝛼) (i.e. (𝐼0, (𝑎𝑗𝑖 , {𝑏

𝑗
𝑖})(𝑖,𝑗)∈𝜅×𝜅)) is an 𝐹𝜙

𝜔 -construction over

𝐼0. □

Claim 6.9.2. 𝐽 is (𝐹𝜙
𝜔 , 𝜅)-saturated.

Proof. Let 𝐴 ⊆ 𝐵 ⊆ 𝐶 and 𝑝 ∈ 𝑆𝑏𝑠(𝐵) be such that |𝐵| < 𝜅, |𝐴| < 𝜔, and
(𝑝,𝐴) ∈ 𝐹𝜙

𝜔 . So there is 𝑎 ∈ 𝐴 such that 𝑎 |= 𝑝 ↾ 𝐵∖{𝑎} and one of the following
holds:

∙ “𝑥 = 𝑎” ∈ 𝑝,
∙ 𝜙(𝑥, 𝑎) ∈ 𝑝.

If “𝑥 = 𝑎” ∈ 𝑝, then 𝑎 |= 𝑝. On the other case 𝜙(𝑥, 𝑎) ∈ 𝑝, means “𝑎 > 𝑥” ∈ 𝑝.
Since |𝐵| < 𝜅, there is 𝛼 < 𝜅 such that 𝐵 ⊆ 𝐽𝛼. So there is 𝑏 ∈ 𝐽𝛼+1∖𝐽𝛼 such that
𝑡𝑝𝑏𝑠(𝑏, 𝐽

𝛼∖{𝑎}) = 𝑡𝑝𝑏𝑠(𝑎, 𝐽
𝛼∖{𝑎}) and 𝑎 > 𝑏. So 𝑏 |= 𝑝. □

□

Notice that the (𝐹𝜙
𝜔 , 𝜅)-primary model is not unique. Suppose a saturated model

of DLO of size 𝜅 exists. The saturated model is a (𝐹𝜙
𝜔 , 𝜅)-primary model for

𝜙(𝑥, 𝑦) := “𝑦 > 𝑥”. But this model is not < 𝜅-stable. On the other hand 𝐼 is a
(𝐹𝜙

𝜔 , 𝜅)-primary model for 𝜙(𝑥, 𝑦) := “𝑦 > 𝑥” and it is < 𝜅-stable.
We can use the 𝐹𝜙

𝜔 -construction of 𝐽 to define the complexity and other notions

of Section 2. Recall that (𝐼0, (𝑎𝑗𝑖 , {𝑏
𝑗
𝑖})(𝑖,𝑗)∈𝜅×𝜅) is a 𝐹𝜙

𝜔 -construction of 𝐽 .

𝑜(𝑎) =

⎧⎪⎨⎪⎩
0 if 𝑎 ∈ 𝐼0

𝑛+ 1 if 𝑎 = 𝑎𝑛,𝛽 where 𝑛 < 𝜔

𝛼 if 𝑎 = 𝑎𝛼,𝛽 where 𝜔 ≤ 𝛼.

We can also characterize the generator of an element. For all 𝑎 ∈ 𝐽 , 𝐺𝑒𝑛(𝑎) is
the set

{𝑏 ∈ 𝐽 | 𝑏 |= 𝑡𝑝𝑏𝑠(𝑎, 𝐽
𝑜(𝑎)∖{𝑎})}.

The road of an element is defined by using the generators. Notice that we can
characterize the depth of an element by its road to 𝐼0. The depth of 𝑎 ∈ 𝐽 is the
index of 𝑎 in its road from 𝐼0, i.e. if ⟨𝜈𝑖 | 𝑖 ≤ 𝛼⟩ is the road from 𝐼0 to 𝑎, then
𝜈𝛼 = 𝑎 and 𝑑𝑝(𝑎) = 𝛼. Finally, in the definition of 𝜅-colorable (Definition 2.7) the
fact that 𝐼 is a linear order is not used.

As we can see, all these notions can be defined from 𝐹𝜙
𝜔 and the existence of a

𝐹𝜙
𝜔 -construction. Therefore, these notions can be generalized to other structures

(not only linear orders) by a different formula 𝜙.
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6.2. 𝑆-recursive reductions. We have used different notions of reduction to study
the complexity of different equivalent relations, (→˓𝑟, →˓𝐵𝑀 , →˓𝐵 , →˓𝑐, and →˓𝐿).
There are other functions that are also useful.

Definition 6.10. Let 𝑆 ⊆ 𝜅 be unbounded. We say that a function 𝑓 : 𝜅𝜅 → 𝜅𝜅 is
𝑆-recursive if there is a function 𝐻 : 𝜅<𝜅 → 𝜅<𝜅 such that for all 𝛼 ∈ 𝑆 and 𝜂 ∈ 𝜅𝜅,
𝑓(𝜂)(𝜃) = 𝐻(𝜂 ↾ 𝛼)(𝜃) for all 𝜃 < 𝑚𝑖𝑛(𝑆∖𝛼 + 1). The existence of an 𝑆-recursive
reduction of 𝐸0 to 𝐸1 is denoted by 𝐸0 →˓𝑅(𝑆) 𝐸1.

We can state some result in a more precise way.

Fact 6.11 (Hyttinen-Moreno, [20] Theorem 2.8). Assume 𝑇 is a countable complete
classifiable theory over a countable vocabulary, 𝑆 ⊆ 𝜅 a stationary set, and 𝜇 a
regular cardinal. Then ∼=𝑇 →˓𝑅(𝜅) =𝜅

𝑆, in particular ∼=𝑇 →˓𝑅(𝑆) =𝜅
𝑆

Fact 6.12 (Hyttinen-Kulikov-Moreno, [18] Lemma 2). Assume 𝑇 is a countable
complete classifiable theory over a countable vocabulary. Let 𝑆 ⊆ 𝜅 a stationary
set. If ♢𝑆 holds, then ∼=𝑇 →˓𝑅(𝜅) =2

𝑆.

Proposition 6.13. Let 𝑆 ⊆ 𝜅 be a club. If 𝑓 : 𝜅𝜅 → 𝜅𝜅 is 𝑆-recursive, then 𝑓 is
Lipschitz.

Proof. Let 𝜂, 𝜉 ∈ 𝜅𝜅 be such that ∆(𝜂, 𝜉) = 𝛼 < 𝜅. So 𝜂 ↾ 𝛼 = 𝜉 ↾ 𝛼. We will show
that ∆(𝑓(𝜂), 𝑓(𝜉)) > 𝛼.

Case 𝛼 ∈ 𝑆.
Since 𝑓 is 𝑆-recursive by 𝐻, 𝑓(𝜂)(𝜃) = 𝐻(𝜂 ↾ 𝛼)(𝜃) = 𝐻(𝜉 ↾ 𝛼)(𝜃) = 𝑓(𝜉)(𝜃) for

all 𝜃 ≤ 𝛼. We conclude that ∆(𝑓(𝜂), 𝑓(𝜉)) > 𝛼.
Case 𝛼 /∈ 𝑆.
Let 𝛼′ = 𝑠𝑢𝑝(𝑆 ∩ 𝛼). Since 𝑆 is closed, 𝛼′ ∈ 𝑆. Let 𝛽 = 𝑚𝑖𝑛(𝑆∖𝛼′ + 1). So

for all 𝜃 < 𝛽, 𝑓(𝜂)(𝜃) = 𝐻(𝜂 ↾ 𝛼′)(𝜃) and 𝑓(𝜉)(𝜃) = 𝐻(𝜉 ↾ 𝛼′)(𝜃). Since 𝛼′ ≤ 𝛼,
𝐻(𝜂 ↾ 𝛼′) = 𝐻(𝜉 ↾ 𝛼′). Thus 𝑓(𝜂)(𝜃) = 𝑓(𝜉)(𝜃) for all 𝜃 < 𝛽. By the way 𝛼′ and 𝛽
were chosen, 𝛼′ ≤ 𝛼 < 𝛽. We conclude that ∆(𝑓(𝜂), 𝑓(𝜉)) > 𝛼. □

It is clear that the identity function is continuous and it is not 𝑆-recursive for
all 𝑆 ⊆ 𝜅. The previous fact cannot be extended to any stationary set 𝑆 ⊆ 𝜅. Let
𝑆 = 𝑆𝜅

𝜔 and 𝜅 > 𝜔1. It is easy to see that the following function is 𝑆𝜅
𝜔-recursive but

not Lipschitz.

𝑓(𝜂) =

⎧⎪⎨⎪⎩
0 if 𝛼 < 𝜔1

0 if 𝛼 > 𝜔1 and 𝜂(𝜔1 + 2) ̸= 1

1 otherwise

In Section 5 we use the complexity of the relation 𝑖𝑑2 to study the complexity
of the relation ∼=𝜆

𝑇 . We didn’t study the relation 𝑖𝑑𝜅 (the identity relation of 𝜅𝜅),
since the existence of a diamond sequence ⟨𝑓𝛼 ∈ 𝛼𝛼 | 𝛼 ∈ 𝑋⟩ for any stationary set
𝑋, implies 𝑖𝑑𝜅 →˓𝑅(𝜅) 𝑖𝑑2. The reduction is given by the function

ℱ(𝜂)(𝛼) =

{︃
1 if 𝛼 ∈ 𝑋 and 𝜂 ↾ 𝛼 = 𝑓𝛼

0 otherwise.

Indeed the usual reductions defined by the use of a diamond sequence are 𝜅-
recursive.

Fact 6.14 (Fernandes-Moreno-Rinot). There exists a < 𝜅-closed 𝜅+-cc forcing
extension in which for all 𝑆 ⊆ 𝜅, =2

𝑆 is Σ1
1(𝜅)-complete by a 𝜅-recursive function,

i.e. for all Σ1
1(𝜅) equivalence relation 𝐸,

𝐸 →˓𝑅(𝜅) =2
𝑆 .
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We can define 𝑆-recursive functions for bounded sets. Let 𝑆 ̸= ∅ be bounded
and 𝛽 = 𝑠𝑢𝑝(𝑆). We say that a function 𝑓 : 𝜅𝜅 → 𝜅𝜅 is 𝑆-recursive if the following
hold

∙ There is a function 𝐻 : 𝜅<𝛽 → 𝜅<𝜅 such that for all 𝛼 ∈ 𝑆 and 𝜂 ∈ 𝜅𝜅,
𝑓(𝜂)(𝜃) = 𝐻(𝜂 ↾ 𝛼)(𝜃) for all 𝜃 < 𝑚𝑖𝑛(𝑆∖𝛼+ 1).

∙ For all 𝜂, 𝜉 ∈ 𝜅𝜅, if 𝜂 ↾ 𝛽 = 𝜉 ↾ 𝛽, then 𝑓(𝜂) = 𝑓(𝜉).

If 𝑆 = {𝛽} for some 𝛽 < 𝜅, then a function 𝑓 : 𝜅𝜅 → 𝜅𝜅 is 𝑆-recursive if for all
𝜂, 𝜉 ∈ 𝜅𝜅, 𝜂 ↾ 𝛽 = 𝜉 ↾ 𝛽 implies 𝑓(𝜂) = 𝑓(𝜉). Let us denote by →˓𝛼 the existence of
an 𝑆-recursive reduction when 𝑆 = {𝛼}.

These 𝑆-recursive functions are the full functions of Motto Ros (see [39]).
Recall the relation 0𝜚. We used this relation to study the gap between the iso-

morphism relation of different classifiable theories. We can generalize this relation
to understand these gaps better.

Definition 6.15 (Counting 𝛼-classes). Let 𝛼 < 𝜅 be an ordinal and 0 < 𝜚 ≤ 𝜅 is
a cardinal. Let us define the equivalence relation 𝛼𝜚 ∈ 𝜅𝜅 × 𝜅𝜅 as follows: 𝜂 𝛼𝜚 𝜉
if and only if one of the following holds:

∙ 𝜚 is finite:
– 𝜂(𝛼) = 𝜉(𝛼) < 𝜚− 1;
– 𝜂(𝛼), 𝜉(𝛼) ≥ 𝜚− 1.

∙ 𝜚 is infinite:
– 𝜂(𝛼) = 𝜉(𝛼) < 𝜚;
– 𝜂(𝛼), 𝜉(𝛼) ≥ 𝜚.

Clearly if 𝛼 < 𝛽 < 𝜅 are ordinals and 0 < 𝜚 ≤ 𝜅 is a cardinal, then 𝛼𝜚 →˓𝛼+1 𝛽𝜚
and 𝛽𝜚 ̸ →˓𝛼+1 𝛼𝜚. Fact 5.18 can be extended to the relations 𝛼𝜚.

Fact 6.16. Suppose 𝜅 > 2𝜔 and 𝑇 is a countable first-order theory in a countable
vocabulary (not necessarily complete) such that ∼=𝑇 has 𝜚 ≤ 𝜅 equivalence classes.
Then for all 𝛼 < 𝜅,

∼=𝑇 →˓𝐵 𝛼𝜚 and 𝛼𝜚 →˓𝛼+1
∼=𝑇 .

If 𝑇 is not categorical then ∼=𝑇 ̸ →˓𝑐 𝛼𝜚.

These functions are important when we study the isomorphism relation of models
of small size. Suppose there are cardinals 𝛽 < 𝛽′ < 𝜅 such that 2𝛽 = 2𝛽

′
= 𝜅. Let

𝑇 be a non-classifiable theory, By Fact 1.2, there are 𝜅 non isomorphic models of

size 𝛽 and of size 𝛽′. It is clear that ∼=𝛽
𝑇 and ∼=𝛽′

𝑇 are continuous bireducible. We can
use the 𝑆-recursive functions to see that these relations have a different complexity.
By the way the relations ∼=𝜇

𝑇 were defined, it is easy to see that

∼=𝛽
𝑇 →˓𝛽 𝛽𝜅 →˓𝛽+1

∼=𝛽′

𝑇 and ∼=𝛽′

𝑇 ̸ →˓𝛽+1 𝛽𝜅 ̸ →˓𝛽
∼=𝛽

𝑇

Indeed, suppose that 𝑇 is a theory such that its language, L(𝑇 ), contains at least
one relational symbol, R, of arity 0 < 𝑛. If 𝑇 has 𝜚models of size 𝜇, then ∼=𝜇

𝑇 →˓𝜇 𝜇𝜚

and for all 𝛼 < 𝜇, ∼=𝜇
𝑇 ̸ →˓𝛼+1 𝛼𝜚.

6.3. Games with models. It is known that the isomorphism relation is charac-
terized by the Ehrenfeucht-Fräıssé game, 𝐸𝐹𝜅

𝜔 -game (see [9] or [47]).
𝑇 is classifiable if for any pair of models of 𝑇 , 𝒜 and ℬ of size 𝜅, the second

player has a winning strategy in the game 𝐸𝐹𝜅
𝜔 (𝒜,ℬ) if and only if 𝒜 and ℬ are

isomorphic.
Generally speaking, there is a game of length 𝜔 that captures the isomorphism of

models of classifiable theories. In certain models of ZFC, by using the machinery of
GDST, we can define a game of length 𝜔 that captures the isomorphism of models
of any theory (classifiable or non-classifiable).
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The Borel*-games are very useful to work with analytic relations, unfortunately
are also a very abstract object of GDST. Luckily the machinery of Dl*𝑆(Π1

2) allow
us to interpret the Borel*-games in a more general and natural way.

A tree 𝑇 is a 𝜅+, 𝜆-tree if all the branches have order at most type 𝜆 and its
cardinality is less than 𝜅+. It is closed if every chain has a unique supremum in 𝑇 .

Definition 6.17 (Models game). The game 𝑀(𝑇,𝐻,𝐺,𝑁,𝐷,𝐶,𝐴, 𝜙) is defined
by the following parameters:

(1) Let 𝑇 ⊆ 𝜅≤𝜔 be a closed 𝜅+, 𝜔+1-tree and denote by 𝐿(𝑇 ) the set of leaves
of 𝑇 .

(2) Let 𝐻 : 𝐿(𝑇 ) → 𝑆𝜅
𝜔 and 𝐺 : 𝐿(𝑇 ) → 𝜅.

(3) Let 𝑁 = ⟨𝑁𝛼 | 𝛼 ∈ 𝑆𝜅
𝜔⟩ be a sequence of sets such that for all 𝛼 ∈ 𝑆𝜅

𝜔 the
following hold:

∙ 𝑁𝛼 is transitive and p.r. closed,
∙ |𝑁𝛼| < 𝜅,
∙ 𝛼 ∪ {𝛼} ⊆ 𝑁𝛼.

(4) Let 𝐷 be a transversal sequence of 𝑁 , i.e. 𝐷 = ⟨𝐷𝛼 | 𝛼 ∈ 𝑆𝜅
𝜔⟩ ∈

∏︀
𝛼∈𝑆𝜅

𝜔
𝑁𝛼.

(5) Let 𝑚 < 𝜔 and 𝐶 = {𝐶𝑖
𝛼 | 𝛼 < 𝜅, 𝑖 < 𝑚} a set of sets.

(6) Let 𝐴 be a predicate of arity 𝑚𝐴, {𝑋𝑖 | 𝑖 < 2} predicates of arity 𝑚𝑖

respectively, and 𝜙 a Π1
2-sentence involving predicates 𝐴 and {𝑋𝑖 | 𝑖 < 2}.

For all 𝑚 < 𝜔 let

𝑍𝑖 = {𝑏 ∈ 𝐿(𝑇 ) | 𝐴 ∩𝐻(𝑏)𝑚𝐴 and 𝐶𝑖
𝐺(𝑏) are both in 𝑁𝐻(𝑏)}.

We say that 𝑏 is 𝑖-valid if 𝑏 ∈ 𝑍𝑖 and

⟨𝐻(𝑏),∈, 𝐴 ∩𝐻(𝑏)𝑚𝐴 , 𝐷𝐻(𝑏), 𝐶
𝑖
𝐺(𝑏)⟩ |=𝑁𝐻(𝑏)

𝜙.

The game 𝑀(𝑇,𝐻,𝐺,𝑁,𝐷,𝐶,𝐴, 𝜙) is played by I and II as follows: The game
starts at the root of 𝑇 and I chooses an immediate successor of it. If after 𝑛 moves
the game is at the node 𝑥, then:

∙ if 𝑛 is even, then I chooses an immediate successor of 𝑥.
∙ if 𝑛 is odd, then II chooses an immediate successor of 𝑥.

After 𝜔 moves the game continues at the unique limit, 𝑏 ∈ 𝐿(𝑇 ), of the chosen
nodes. The game finishes when a player cannot move. Player II wins if one of the
following holds:

∙ for all 𝑖 < 𝑚, 𝑏 is 𝑖-valid,
∙ for all 𝑖 < 𝑚, 𝑏 is not 𝑖-valid.

We write II ↑ 𝑀(𝑇,𝐻,𝐺,𝑁,𝐷,𝐶,𝐴, 𝜙) when II has a winning strategy for the
game 𝑀(𝑇,𝐻,𝐺,𝑁,𝐷,𝐶,𝐴, 𝜙).

Lemma 6.18. Suppose Dl*𝑆(Π1
2) holds. For all Σ1

1(𝜅) equivalence relation 𝑅, there

are 𝑇𝑅, 𝐻𝑅, 𝐺𝑅, 𝑁𝑅, 𝐷𝑅, 𝐴𝑅, and 𝜙𝑅 such that for all 𝜂, 𝜉 ∈ 𝜅𝜅 there is 𝐶(𝜂, 𝜉)
such that

II ↑𝑀(𝑇𝑅, 𝐻𝑅, 𝐺𝑅, 𝑁𝑅, 𝐷𝑅, 𝐶(𝜂, 𝜉), 𝐴𝑅, 𝜙𝑅) iff 𝜂 𝑅 𝜉.

Proof. Let 𝑅 be a Σ1
1(𝜅) equivalence relation. Let 𝑇 be the tree of all the increasing

sequence of length at most 𝜔 ordered by endextension, i.e. 𝜁 : 𝜅<𝜔 → 𝜅. For all
𝑏 ∈ 𝐿(𝑇 ) define 𝐻(𝑏) = 𝐺(𝑏) = 𝑠𝑢𝑝(𝑏). Let 𝑁 = ⟨𝑁𝛼 | 𝛼 ∈ 𝑆𝜅

𝜔⟩ be a Dl*𝑆(Π1
2)

sequence. From [7] Theorem 3.5, there are 𝐴 a predicate of arity 5 and a Π1
2-

sentence 𝜙 such that

𝜂 𝑅 𝜉 ⇔ ⟨𝜅,∈, 𝐴, 𝜂, 𝜉⟩ |= 𝜙,

𝜙 includes the sentence “𝑅 is transitive and reflexive”.
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From the Transversal lemma ([7] Proposition 3.1) there exists a transversal 𝐷 =
⟨𝐷𝛼 | 𝛼 ∈ 𝑆𝜅

𝜔⟩ ∈
∏︀

𝛼∈𝑆𝜅
𝜔
𝑁𝛼 satisfying the following.

For every 𝜁 ∈ 𝜅𝜅, whenever ⟨𝜅,∈, (𝐴𝑛)𝑛∈𝜔⟩ |= 𝜙, there are stationarily many
𝛼 ∈ 𝑆𝜅𝜔 such that

(1) 𝜁𝛼 = 𝜁 ↾ 𝛼, and
(2) ⟨𝛼,∈, (𝐴𝑛 ∩ (𝛼𝑚(A𝑛)))𝑛∈𝜔⟩ |=𝑁𝛼

𝜙.

Finally, let 𝐶(𝜂, 𝜉) = {𝐶𝑖
𝛼 | 𝛼 < 𝜅, 𝑖 < 2}, where 𝐶0

𝛼 = 𝜂 ↾ 𝛼 and 𝐶1
𝛼 = 𝜉 ↾ 𝛼.

By [7] Theorem 3.5, 𝜂 𝑅 𝜉 holds if and only if there is a club 𝐸 ⊆ 𝜅 such that
for all 𝛼 ∈ 𝐸 ∩ 𝑆𝜅

𝜔, 𝜂 ↾ 𝛼, 𝜉 ↾ 𝛼 ∈ 𝑁𝛼 and

⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝐷𝛼, 𝜂 ↾ 𝛼⟩ |=𝑁𝛼 𝜙 ⇔ ⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝐷𝛼, 𝜉 ↾ 𝛼⟩ |=𝑁𝛼 𝜙.

Claim 6.18.1.

II ↑𝑀(𝑇,𝐻,𝐺,𝑁,𝐷,𝐶(𝜂, 𝜉), 𝐴, 𝜙) iff 𝜂 𝑅 𝜉.

Proof. ⇐) Suppose 𝜂 𝑅 𝜉. Let 𝐸 be the club mentioned above. By the way 𝑇
was defined, there is a strategy 𝜎 for II such that the game always end in a leave
𝑏 ∈ 𝐿(𝑇 ) such that 𝑠𝑢𝑝(𝑏) ∈ 𝐸. Thus 𝐻(𝑏) = 𝐺(𝑏) ∈ 𝐸. Therefore, 𝑏 is 0-valid if
and only if it is 1-valid, and 𝜎 is a winning strategy for II.

⇒) Suppose II ↑ 𝑀(𝑇,𝐻,𝐺,𝑁,𝐷,𝐶(𝜂, 𝜉), 𝐴, 𝜙). Let 𝜎 be a winning strategy
for II. We can represent 𝜎 as a function 𝜎 : 𝜅<𝜔 → 𝜅, so that if II plays following 𝜎,
then II moves from 𝑥 to 𝑥⌢⟨𝜎(𝑥)⟩. Let 𝐸𝜎 be the club of closed points of 𝜎 (i.e. the
ordinals 𝛼 < 𝜅 such that 𝜎[𝛼<𝜔] ⊆ 𝛼). Thus, for all 𝛼 ∈ 𝐸𝜎 ∩ 𝑆𝜅

𝜔, 𝜂 ↾ 𝛼, 𝜉 ↾ 𝛼 ∈ 𝑁𝛼

implies

⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝐷𝛼, 𝜂 ↾ 𝛼⟩ |=𝑁𝛼
𝜙 ⇔ ⟨𝛼,∈, 𝐴 ∩ 𝛼5, 𝐷𝛼, 𝜉 ↾ 𝛼⟩ |=𝑁𝛼

𝜙.

Since 𝑁 is a Dl*𝑆(Π1
2) sequence, there is a club 𝐸 ⊆ 𝐸𝜎 such that 𝜂 ↾ 𝛼, 𝜉 ↾ 𝛼 ∈ 𝑁𝛼.

By [7] Theorem 3.5, we conclude that 𝜂 𝑅 𝜉 □

□

We know that for any theory, 𝑇 , the isomorphism relation of 𝑇 is Σ1
1(𝜅). Thus

the existence of a Dl*𝑆(Π1
2) sequence implies the existence of a game G(𝒜,ℬ) of

length 𝜔 such that for any theory 𝑇 and models 𝒜,ℬ |= 𝑇 ,

𝒜 ∼= ℬ ⇔ II ↑ G(𝒜,ℬ).

Notice that other well known games (e.g. 𝐸𝐹𝜅
𝜔 -games or the determinacy games)

are Model-games, i.e. it is possible to code them as a Model-game with the right
parameters.
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[29] L. Löwenheim, Über Möglichkeiten im Relativkalkül, Math. Ann. 76, 447–470 (1915).

DOI:10.1007/BF01458217, MR1511835.
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