Miguel Moreno University of Vienna FWF Meitner-Programm

Meeting of the Austrian Mathematical Society

Graz

21 September, 2023

Geometry

History

Independence of Euclid's fifth postulate, the parallel postulate.

► Khayyám (1077) and Saccheri (1733) considered the three different cases of the Khayyám-Saccheri quadrilateral (right, obtuse, and acute).

Euclidean geometry, Elliptic geometry, Hyperbolic geometry.

The spectrum fuction

Dividing lines

Let T be a countable theory over a countable language. Let $I(T,\alpha)$ denote the number of non-isomorphic models of T with cardinality α .

Non-classifiable theories

What is the behavior of $I(T, \alpha)$?

ÖMGT

Categoricity

History

▶ 1904: Veble introduced categorical theories.

▶ 1915 - 1920: Löwenheim-Skolem Theorem.

▶ **1965:** Morley's categoricity theorem.

Dividing lines

History

1960's: Let T be a first-order countable theory over a countable language. For all $\aleph_0 < \lambda < \kappa$,

$$I(T,\lambda) \leq I(T,\kappa).$$

1990: Shelah proved Morley's conjecture.

Non-classifiable theories

Shelah's Main Gap Theorem

Dividing lines

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T,\alpha)=2^{\alpha}$; or $\forall \alpha>0$, $I(T,\aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|).$

If T is classifiable and T' is not, then T is less complex than T'and their complexity are not close.

Descriptive Set Theory

Dividing lines

▶ 1989: Friedman and Stanley introduced the Borel reducibility between classes of countable structures.

▶ **1993:** Mekler-Väänänen κ -separation theorem.

▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a systematic comparison between the Main Gap dividing lines and the complexity given by Borel reducibility.

The bounded topology

Dividing lines

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa} = \kappa$.

We equip the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in \kappa^{\kappa} \mid \zeta \subset \eta \}$$

is a basic open set.

The Generalised Baire spaces

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

Non-classifiable theories

The generalised Cantor space is the subspace 2^{κ} .

Coding structures

Dividing lines

Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$.

Definition

Let π be a bijection between $\kappa^{<\omega}$ and κ . For every $f \in \kappa^{\kappa}$ define the structure A_f with domain κ and for every tuple (a_1, a_2, \ldots, a_n) in κ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_f} \Leftrightarrow f(\pi(m, a_1, a_2, \ldots, a_n)) > 0$$

The isomorphism relation

Definition

Given T a first-order complete countable theory in a countable vocabulary, we say that $f, g \in \kappa^{\kappa}$ are $\cong_{\mathcal{T}}$ equivalent if one of the following holds:

- $\blacktriangleright \mathcal{A}_f \models T, \mathcal{A}_g \models T, \mathcal{A}_f \cong \mathcal{A}_g$
- $\triangleright A_f \nvDash T, A_g \nvDash T$

Reductions

GDST

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is reducible to E_2 , if there is a function $f: \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

Non-classifiable theories

We can define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T' \text{ iff } \cong_{T} \hookrightarrow_{C} \cong_{T'}$$

Non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable:
- T is stable unsuperstable;
- T is superstable with DOP;
- T is superstable with OTOP.

Dividing lines

Fact (Friedman-Hyttinen-Kulikov 2014)

1. Let $\kappa^{<\kappa} = \kappa > 2^{\omega}$. If T is classifiable and shallow, then \cong_T is κ -Borel.

- 2. If T is classifiable non-shallow, then \cong_T is $\Delta^1_1(\kappa)$ not κ -Borel.
- 3. If T is unstable or stable with the OTOP or superstable with the DOP and $\kappa > \omega_1$, then \cong_T is not $\Delta_1^1(\kappa)$.
- 4. If T is stable unsuperstable, then \cong_{τ} is not κ -Borel.

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)

Let κ be such that $\kappa > 2^{\omega}$. If T is classifiable and shallow with depth α , then $rk_B(\cong_T) \leq 4\alpha$.

Non-classifiable theories

Theorem (Mangraviti - Motto Ros 2020)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_{\gamma}}(|\gamma|) \leq \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T \hookrightarrow_B \cong_{T'}$$

General reduction

Fact (Mangraviti-Motto Ros)

Let E_1 be a Borel equivalence relation with $\gamma < \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma < \theta$, then $E_1 \hookrightarrow_B E_2$.

Let $0 < \varrho \le \kappa$. $\eta \ 1_{\varrho} \xi$ if and only if one of the following holds:

- \triangleright ρ is finite:
 - $n(0) = \xi(0) < \rho 1;$
 - $\eta(0), \xi(0) \ge \rho 1.$
- \triangleright ρ is infinite:
 - ρ $\eta(0) = \xi(0) < \rho$;
 - ρ $\eta(0), \xi(0) > \rho$.

Few equivalence classes

Lemma (M. 2023)

Suppose $\kappa > 2^\omega$ and T is a countable first-order theory in a countable vocabulary (not necessarily complete) such that \cong_T has $\varrho \leq \kappa$ equivalence classes. Then

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} 1_{\varrho} \text{ and } 1_{\varrho} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}}.$$

Even more, if T is not categorical then $\cong_T \not\hookrightarrow_C 1_\varrho$.

Theorem (M. 2023)

Suppose $\aleph_{\mu} = \kappa = \lambda^+ = 2^{\lambda}$ is such that $\beth_{\omega_1}(\mid \mu \mid) \leq \kappa$. Let T_1 be a countable complete classifiable shallow theory with $\varrho = I(\kappa, T_1)$, T_2 be a countable complete theory not classifiable shallow. If T is classifiable shallow such that $1 < I(\kappa, T) < I(\kappa, T_1)$, then

$$\cong_{\mathcal{T}} \hookrightarrow_{\mathcal{B}} 1_{\varrho} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_1} \hookrightarrow_{\mathcal{B}} 1_{\kappa} \hookrightarrow_{\mathcal{L}} \cong_{\mathcal{T}_2}.$$

In particular

$$\cong_{\mathcal{T}_2} \not\hookrightarrow_r 1_{\kappa} \not\hookrightarrow_r \cong_{\mathcal{T}_1} \not\hookrightarrow_{\mathcal{C}} 1_{\varrho} \not\hookrightarrow_r \cong_{\mathcal{T}}.$$

Unsuperstable theories

Theorem (Hyttinen - Kulikov - M. 2017)

Suppose $\kappa=\lambda^+$, $2^{\lambda}>2^{\omega}$, and $\lambda^{\omega}=\lambda$. If T is classifiable and T' is stable unsuperstable, then $T\leq^{\kappa}T'$ and $T'\nleq^{\kappa}T$.

Theorem (M. 2022)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$ and $\lambda^{\omega} = \lambda$. If T is a classifiable theory, and T' is an unsuperstable theory, then $T \leq^{\kappa} T'$ and $T' \nleq^{\kappa} T$.

Definition

We define the equivalence relation $=_{\gamma}^2 \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let

$$S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \},\$$

$$\eta = {}^2_{\gamma} \xi \iff \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S \text{ is non-stationary.}$$

Borel-reducibility Main Gap

Dividing lines

Theorem (M. 2023)

Let $\mathfrak{c}=2^{\omega}$. Suppose $\kappa=\lambda^+=2^{\lambda}$ and $2^{\mathfrak{c}}\leq\lambda=\lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then there is $\gamma < \kappa$ such that

Non-classifiable theories

000000

$$\cong_T \hookrightarrow_C =_{\gamma}^2 \hookrightarrow_C \cong_{T'} \text{ and } =_{\gamma}^2 \not\hookrightarrow_B \cong_T.$$

In particular

$$T \leq^{\kappa} T'$$
 and $T' \nleq^{\kappa} T$.

Non-classifiable theories

Theorem (M. 2023)

If λ is such that $\lambda = \lambda^{<\lambda}$. For all $\omega < \gamma < \lambda$ regular, T_2 unstable or superstable, and T_1 is classifiable:

$$\cong_{\mathcal{T}_1} \hookrightarrow_{\mathcal{C}} =_{\gamma}^2 \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}_2} \text{ and } \cong_{\mathcal{T}_2} \not\hookrightarrow_{\mathcal{B}} \cong_{\mathcal{T}_1}.$$

In particular

$$=^2_{\gamma} \not\hookrightarrow_B \cong_{T_1}$$
.

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq\lambda=\lambda^{\omega_1}$. There exists a cofinality-preserving forcing extension in which the following holds:

If T_1 is classifiable and T_2 is not. Then there is a regular cardinal $\gamma < \kappa$ such that, if X, $Y \subseteq S_{\gamma}^{\kappa}$ are stationary and disjoint, then $=_X^2$ and $=_Y^2$ are strictly in between \cong_{T_1} and \cong_{T_2} .

Main Gap Dichotomy

Dividing lines

Theorem (M. 2023)

Let κ be inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} < \lambda = \lambda^{<\omega_1}$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

- $ightharpoonup \cong_T \text{ is } \Delta^1_1(\kappa);$
- ightharpoonup $\cong_{\mathcal{T}}$ is $\Sigma^1_1(\kappa)$ -complete.

Lemma (M. 2023)

Let κ be strongly inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} < \lambda = \lambda^{<\omega_1}$. For all cardinals $\aleph_0 < \mu < \delta < \kappa$, if T is a non-classifiable theory then

$$\cong_T^{\mu} \hookrightarrow_C \cong_T^{\delta} \hookrightarrow_C \text{ id } \hookrightarrow_C \cong_T.$$

Classifiable non-shallow

Lemma (M. 2023)

Suppose $\kappa = \lambda^+ = 2^{\lambda}$. The following reduction is strict. Let $2^{\mathfrak{c}} \leq \lambda = \lambda^{<\omega_1}$. If T_1 is a classifiable non-shallow theory and T_2 is a non-classifiable theory, then

$$\cong_{T_2}^{\lambda} \hookrightarrow_{\mathcal{C}} \cong_{T_1} \hookrightarrow_{\mathcal{C}} \cong_{T_2}.$$

Classifiable shallow

Lemma (M. 2023)

Suppose $\kappa=\lambda^+=2^\lambda$. The following reductions are strict. Let $\kappa=\aleph_\gamma$ be such that $\beth_{\omega_1}(\mid\gamma\mid)\leq\kappa$. Suppose T_1 is a classifiable shallow theory, T_2 a classifiable non-shallow theory, and T_3 non-classifiable theory. Then

$$\cong_{T_1} \hookrightarrow_B \cong_{T_3}^{\lambda} \hookrightarrow_C \cong_{T_2}.$$

Article at: https://arxiv.org/abs/2308.07510

References

Dividing lines

▶ O. Veblen, A System of Axioms for Geometry, Transactions of the American Mathematical Society 5, 343–384 (1904).

- L. Löwenheim, Uber Möglichkeiten im Relativkalkül, Math. Ann. **76**, 447–470 (1915).
- T. Skolem, Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen, Videnskapsselskapets skrifter. I. Mat.-naturv. klasse. 4, 1-36 (1920).
- M. Morley, Categoricity in power, Trans. Amer. Math. Soc. **114**, 514–538 (1965).

Dividing lines

References

- S. Shelah, *Classification theory*, Stud. Logic Found. Math. **92**, North-Holland (1990).
- ▶ H. Friedman, L. Stanley, A Borel reducibility theory for classes of countable structures, Journal of Symbolic Logic. 54, 894–914 (1989).

- A. Mekler, and J. Väänänen, Trees and Π_1^1 -subsets of ω_1 , The Journal of Symbolic Logic. **58**, 1052–1070 (1993).
- S.D. Friedman, T. Hyttinen, and V. Kulikov, Generalized descriptive set theory and classification theory, in Memories of the American Mathematical Society 230 (2014).

Dividing lines

References

F. Mangraviti, and L. Motto Ros, A descriptive main gap theorem, Journal of Mathematical Logic. 21, 2050025 (2020).

- T. Hyttinen, V. Kulikov, and M. Moreno, A generalized Borel-reducibility counterpart of Shelah's main gap theorem, Arch. math. Logic. **56**, 175 – 185 (2017).
- M. Moreno, On unsuperstable theories in GDST, (arXiv:2203.14292). The Journal of Symbolic Logic, accepted, (2022).
- M. Moreno, Shelah's Main Gap and the generalized Borel-reducibility. Preprint, (2023).

