The Borel reducibility Main Gap

Miguel Moreno University of Helsinki

Seventh workshop on generalised Baire spaces
Bristol

8 February, 2024

The spectrum fuction

Let T be a countable theory over a countable language. Let $I(T,\alpha)$ denote the number of non-isomorphic models of T with cardinality α .

What is the behavior of $I(T, \alpha)$?

Categoricity

- ▶ 1915 1920: Löwenheim-Skolem Theorem.
- ▶ **1929:** Gödel's completeness theorem.
- ▶ **1965:** Morley's categoricity theorem.
- ▶ 1960's: Let T be a first-order countable theory over a countable language. For all $\aleph_0 < \lambda < \kappa$,

$$I(T, \lambda) \leq I(T, \kappa).$$

Shelah's Main Gap Theorem

Theorem (Shelah 1990)

Either, for every uncountable cardinal α , $I(T,\alpha) = 2^{\alpha}$; or $\forall \alpha > 0$, $I(T,\aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|)$.

If T has less models than T', then T is less complex than T' and their complexity are not close.

Non-classifiable theories

A theory T is non-classifiable if it is a countable complete theory that satisfies one of the following:

- T is unstable:
- T is stable unsuperstable;
- T is superstable with DOP;
- T is superstable with OTOP.

Classifiable theories

Classifiable are divided into:

shallow,

$$I(T, \aleph_{\alpha}) < \beth_{\omega_1}(|\alpha|);$$

non-shallow,

$$I(T,\alpha)=2^{\alpha}.$$

If T is classifiable and T' is not, then T is less complex than T' and their complexity are not close.

Descriptive Set Theory

▶ 1989: Friedman and Stanley introduced the Borel reducibility between classes of countable structures.

▶ **1993:** Mekler-Väänänen κ -separation theorem.

▶ 2014: Friedman-Hyttinen-Kulikov developed GDST and a systematic comparison between the Main Gap dividing lines and the complexity given by Borel reducibility.

Let κ be an uncountable cardinal that satisfies $\kappa^{<\kappa}=\kappa$.

We equip the set κ^{κ} with the bounded topology. For every $\zeta \in \kappa^{<\kappa}$, the set

$$[\zeta] = \{ \eta \in \kappa^{\kappa} \mid \zeta \subset \eta \}$$

is a basic open set.

The Generalised Baire spaces

The generalised Baire space is the space κ^{κ} endowed with the bounded topology.

The generalised Cantor space is the subspace 2^{κ} .

Let $\omega \leq \mu \leq \kappa$ be a cardinal. Fix a relational language $\mathcal{L} = \{P_n | n < \omega\}$ and a bijection π_μ between $\mu^{<\omega}$ and μ .

Definition

For every $\eta \in \kappa^{\kappa}$ define the structure $\mathcal{A}_{\eta \upharpoonright \mu}$ with domain μ as follows: For every tuple (a_1, a_2, \ldots, a_n) in μ^n

$$(a_1, a_2, \ldots, a_n) \in P_m^{\mathcal{A}_{\eta} \upharpoonright \mu} \Leftrightarrow \eta(\pi_{\mu}(m, a_1, a_2, \ldots, a_n)) > 0.$$

Definition

Let $\omega \leq \mu \leq \kappa$ be a cardinal and T a first-order theory in a relational countable language, we say that $\eta, \xi \in \kappa^{\kappa}$ are \cong_T^{μ} equivalent if one of the following holds:

- $\blacktriangleright \ \mathcal{A}_{\eta \restriction \mu} \models T, \mathcal{A}_{\xi \restriction \mu} \models T, \mathcal{A}_{\eta \restriction \mu} \cong \mathcal{A}_{\xi \restriction \mu}$
- $\blacktriangleright \ \mathcal{A}_{\eta \upharpoonright \mu} \not\models T, \mathcal{A}_{\xi \upharpoonright \mu} \not\models T$

Reductions

Let E_1 and E_2 be equivalence relations on κ^{κ} . We say that E_1 is reducible to E_2 , if there is a function $f: \kappa^{\kappa} \to \kappa^{\kappa}$ that satisfies $(x,y) \in E_1 \Leftrightarrow (f(x),f(y)) \in E_2$. We write $E_1 \hookrightarrow_r E_2$.

We can use continuous functions to define a partial order on the set of all first-order complete countable theories

$$T \leq^{\kappa} T' \text{ iff } \cong_{T} \hookrightarrow_{C} \cong_{T'}$$

Question

Question: What can we say about the Borel-reducibility between different dividing lines?

Conjecture: If T is classifiable and T' is non-classifiable, then $T <^{\kappa} T'$ and $T' \not<^{\kappa} T$.

Classifiable and shallow

Theorem (Mangraviti - Motto Ros 2020)

Let $\kappa = \aleph_{\gamma}$ be such that $\kappa^{<\kappa} = \kappa$ and $\beth_{\omega_1}(|\gamma|) \leq \kappa$. Let T, T' be countable complete first-order theories, and suppose T is classifiable and shallow, while T' is not. Then

$$\cong_T \hookrightarrow_B \cong_{T'}$$

Fact (Mangraviti-Motto Ros)

Let E_1 be a Borel equivalence relation with $\gamma \leq \kappa$ equivalence classes and E_2 be an equivalence relation with θ equivalence classes. If $\gamma < \theta$, then $E_1 \hookrightarrow_B E_2$.

Let $\alpha<\kappa$ be an ordinal and $0<\varrho\leq\kappa$. η α_{ϱ} ξ if and only if one of the following holds:

- \triangleright ρ is finite:
- \triangleright ϱ is infinite:

Gap: Shallow and Non-shallow

Theorem (M. 2023)

Suppose $\aleph_{\mu} = \kappa = \lambda^{+} = 2^{\lambda}$ is such that $\beth_{\omega_{1}}(\mid \mu \mid) \leq \kappa$. Let T_{0} and T_{1} be countable complete classifiable shallow theories such that $1 < I(\kappa, T_{0}) < I(\kappa, T_{1}) = \varrho$, T_{2} be a countable complete theory not classifiable shallow. Then

$$\cong_{T_0} \hookrightarrow_B 0_{\varrho} \hookrightarrow_L \cong_{T_1} \hookrightarrow_B 0_{\kappa} \hookrightarrow_L \cong_{T_2}$$

and

$$\cong_{T_2} \not\hookrightarrow_r 0_{\kappa} \not\hookrightarrow_r \cong_{T_1} \not\hookrightarrow_C 0_{\varrho} \not\hookrightarrow_r \cong_{T_0}.$$

Theorem (Hyttinen - Kulikov - M. 2017)

Suppose $\kappa = \lambda^+$, $2^{\lambda} > 2^{\omega}$, and $\lambda^{<\lambda} = \lambda$. There is a κ -closed κ^+ -cc forcing which forces: If T is classifiable and T' is non-classifiable, then $T \leq^{\kappa} T'$ and $T' \nleq^{\kappa} T$.

Theorem (Hyttinen - Kulikov - M. 2017)

Suppose $\kappa=\lambda^+$, $2^{\lambda}>2^{\omega}$, and $\lambda^{\omega}=\lambda$. If T is classifiable and T' is stable unsuperstable, then $T\leq^{\kappa}T'$ and $T'\nleq^{\kappa}T$.

Borel-reducibility Main Gap

Theorem (M. 2023)

Let $\mathfrak{c}=2^\omega$. Suppose $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq\lambda=\lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then $T\leq^\kappa T'$ and $T'\not\leq^\kappa T$.

Definition

We define the equivalence relation $=_{\gamma}^2 \subseteq 2^{\kappa} \times 2^{\kappa}$, as follows: let

$$S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \},\$$

$$\eta = {}^2_{\alpha} \xi \iff \{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\} \cap S$$
 is non-stationary.

$$\cong_T \hookrightarrow_C =^2_\mu$$
, $\kappa = \lambda^+$

Theory	$\lambda = \lambda^{\gamma}$	\Diamond_{λ}	$Dl^*_{\mathcal{S}^\kappa_\gamma}(\Pi^1_1)$
Classifiable	$\omega \leq \mu \leq$	$\mu = \lambda$	$\mu = \gamma$
	γ		
Non-	Indep	Indep	$\mu = \gamma$
classifiable			

Theory	$\lambda = \lambda^{\gamma}$	$2^{\mathfrak{c}} \leq \lambda =$	$2^{\mathfrak{c}} \leq \lambda =$
		λ^{γ}	$\lambda^{<\lambda}$
			$\&\ \diamondsuit_{\lambda}$
Stable	$\mu = \omega$	$\mu = \omega$	$\mu = \omega$
Unsuper-			
stable			
Unstable	$\omega \le \mu \le$	$\omega \le \mu \le$	$\omega \le \mu \le$
	γ	γ	λ
Superstable	$\omega \leq \mu \leq$	$\omega \le \mu \le$	$\omega \le \mu \le$
with	γ	γ	λ
ОТОР			
Superstable	?	$\omega_1 \le \mu \le$	$\omega_1 \le \mu \le$
with DOP		γ	λ

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa=\lambda^+=2^\lambda$ and $2^\mathfrak{c}\leq \lambda=\lambda^{\omega_1}$. There exists a cofinality-preserving forcing extension in which the following holds:

If T_1 is classifiable and T_2 is not. Then there is a regular cardinal $\gamma < \kappa$ such that, if X, $Y \subseteq S_\gamma^\kappa$ are stationary and disjoint, then $=_X^2$ and $=_Y^2$ are strictly in between \cong_{T_1} and \cong_{T_2} .

The Gap

Main Gap Dichotomy

Theorem (M. 2023)

Let κ be inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} < \lambda = \lambda^{<\omega_1}$. There exists a $< \kappa$ -closed κ^+ -cc forcing extension in which for any countable first-order theory in a countable vocabulary (not necessarily complete), T, one of the following holds:

- $ightharpoonup \cong_T \text{ is } \Delta^1_1(\kappa);$
- $ightharpoonup \cong_T$ is $\Sigma^1_1(\kappa)$ -complete.

The Gap

Non-classifiable theories

Lemma (M. 2023)

Let κ be strongly inaccessible, or $\kappa = \lambda^+ = 2^{\lambda}$ and $2^{\mathfrak{c}} < \lambda = \lambda^{<\omega_1}$. For all cardinals $\aleph_0 < \mu < \delta < \kappa$, if T is a non-classifiable theory then

$$\cong_T^{\mu} \hookrightarrow_C \cong_T^{\delta} \hookrightarrow_C \text{ id } \hookrightarrow_C \cong_T.$$

Lemma (M. 2023)

Suppose $\kappa=\lambda^+=2^\lambda$. The following reduction is strict. Let $2^{\mathfrak{c}}\leq \lambda=\lambda^{<\omega_1}$. If T_1 is a classifiable non-shallow theory and T_2 is a non-classifiable theory, then

$$\cong_{\mathcal{T}_2}^{\lambda} \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}_1} \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}_2}.$$

Lemma (M. 2023)

Suppose $\kappa=\lambda^+=2^\lambda$. The following reductions are strict. Let $\kappa=\aleph_\gamma$ be such that $\beth_{\omega_1}(\mid\gamma\mid)\leq\kappa$. Suppose T_1 is a classifiable shallow theory, T_2 a classifiable non-shallow theory, and T_3 non-classifiable theory. Then

$$\cong_{\mathcal{T}_1} \hookrightarrow_{\mathcal{B}} \cong_{\mathcal{T}_3}^{\lambda} \hookrightarrow_{\mathcal{C}} \cong_{\mathcal{T}_2}.$$

Theorem (M. 2023)

Let $\mathfrak{c}=2^{\omega}$. Suppose $\kappa=\lambda^+=2^{\lambda}$ and $2^{\mathfrak{c}}<\lambda=\lambda^{\omega_1}$. If T is a classifiable theory, and T' is a non-classifiable theory, then there is $\gamma < \kappa$ such that

$$\cong_T \hookrightarrow_C =_{\gamma}^2 \hookrightarrow_C \cong_{T'} \text{ and } =_{\gamma}^2 \not\hookrightarrow_B \cong_T.$$

Classifiable theories

Theorem (Hyttinen - Kulikov - M. 2017)

Assume T is a classifiable theory and let

$$S = \{ \alpha < \kappa \mid cf(\alpha) = \gamma \}.$$
 If \diamondsuit_S holds, then $\cong_T \hookrightarrow_C =_{\gamma}^2$.

Theorem (Friedman - Hyttinen - Kulikov 2014)

If T is a classifiable theory and $\gamma < \kappa$ is regular, then $= \frac{2}{\gamma} \nleftrightarrow_B \cong_T$.

Blue print of the proof

- Construct the reductions.
- ► Construct Ehrenfeucht-Mostowski models, such that

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Construct ordered trees, such that

$$f =_{\gamma}^2 g \Leftrightarrow A_f \cong A_g.$$

$$\kappa^+$$
, $(\gamma+2)$ -tree*

Let $\gamma < \kappa$ be a regular cardinal. A κ^+ , $(\gamma + 2)$ -tree* t is a tree with the following properties:

- t has a unique root.
- \triangleright Every element of t has less than κ^+ immediate successors.
- \blacktriangleright All the branches of t have order type γ or $\gamma + 1$.
- \triangleright Every chain of length less than γ has a unique limit.

Isomorphism of κ^+ , $(\gamma+2)$ -tree*

Lemma (Hyttinen - Kulikov - M.)

Suppose $\gamma < \kappa$ is such that for all $\epsilon < \kappa$, $\epsilon^{\gamma} < \kappa$. For every $f,g \in 2^{\kappa}$ there are κ^+ , $(\gamma+2)$ -trees* J_f and J_g such that

$$f =_{\gamma}^{2} g \Leftrightarrow J_{f} \cong_{ct} J_{g}$$

where \cong_{ct} is the isomorphism of κ^+ , $(\gamma + 2)$ -tree*.

Definition

Let $\gamma < \kappa$ be a regular cardinal and I a linear order. $(A, \prec, <)$ is an ordered tree if the following holds:

- \blacktriangleright (A, \prec) is a κ^+ , $(\gamma + 2)$ -tree*.
- ▶ for all $x \in A$, (succ(x), <) is isomorphic to I.

κ-colorable

Definition

Let I be a linear order of size κ . We say that I is κ -colorable if there is a function $F: I \to \kappa$ such that for all $B \subseteq I$, $|B| < \kappa$, $b \in I \setminus B$, and $p = tp_{bs}(b, B, I)$ such that the following hold: For all $\alpha \in \kappa$.

$$|\{a \in I \mid a \models p \& F(a) = \alpha\}| = \kappa.$$

Isomorphism of ordered trees

Theorem (M. 2023)

Suppose $\gamma < \kappa$ is such that for all $\epsilon < \kappa$, $\epsilon^{\gamma} < \kappa$, and there is a κ -colorable linear order I. For all $f \in 2^{\kappa}$ there is an ordered tree A_f such that for all $f, g \in 2^{\kappa}$,

$$f =_{\gamma}^{2} g \Leftrightarrow A_{f} \cong A_{g}.$$

The models

Example of DOP.

Suppose T is superstable with DOP in a countable relational vocabulary τ . Let τ^1 be a Skolemization of τ , and T^1 be a complete theory in τ^1 extending T and with Skolem-functions in τ . Then for every $f \in 2^\kappa$ we want a model $\mathcal{M}_1^f \models T^1$ with the following properties.

The models

- 1. There is a map $\mathcal{H}: A_f \to (dom\ \mathcal{M}_1^f)^n$ for some $n < \omega$, $\eta \mapsto a_{\eta}$, such that \mathcal{M}_1^f is the Skolem hull of $\{a_{\eta} \mid \eta \in A_f\}$. Let us denote $\{a_{\eta} \mid \eta \in A_f\}$ by $Sk(\mathcal{M}_1^f)$.
- 2. $\mathcal{M}^f = \mathcal{M}_1^f \upharpoonright \tau$ is a model of T.
- 3. $Sk(\mathcal{M}_1^f)$ is indiscernible in \mathcal{M}_1^f relative to $L_{\omega_1\omega_1}$, i.e. if $tp_{at}(\bar{s},\emptyset,A_f)=tp_{at}(\bar{s'},\emptyset,A_f)$, then $tp_{\Delta}(\bar{a}_{\bar{s}},\emptyset,\mathcal{M}_1^f)=tp_{\Delta}(\bar{a}_{\bar{s'}},\emptyset,\mathcal{M}_1^f)$, where $\Delta=L_{\omega_1\omega_1}$.
- 4. There is a formula $\varphi \in L_{\omega_1\omega_1}(\tau)$ such that for all $\eta, \nu \in A_f$ and $m < \gamma$, if $A_f \models P_m(\eta) \land P_{\gamma}(\nu)$, then $\mathcal{M}^f \models \varphi(a_{\nu}, a_{\eta})$ if and only if $A_f \models \eta \prec \nu$.

Coding trees

For every $f \in 2^{\kappa}$ let us define the order $K^{D}(f)$ by:

- 1. $dom \ K^D(f) = (dom \ A_f \times \{0\}) \cup (dom \ A_f \times \{1\}).$
- II. For all $\eta \in A_f$, $(\eta, 0) <_{K^D(f)} (\eta, 1)$.
- III. If $\eta, \xi \in A_f$, then $\eta \prec \xi$ if and only if

$$(\eta,0) <_{K^{D}(f)} (\xi,0) <_{K^{D}(f)} (\xi,1) <_{K^{D}(f)} (\eta,1).$$

IV. If $\eta, \xi \in A_f$, then $\eta < \xi$ if and only if $(\eta, 1) <_{K^D(f)} (\xi, 0)$.

Definition

Let I be a linear order of size κ and ε a regular cardinal smaller than κ . We say that I is ε -dense if the following holds.

If A, B \subseteq I are subsets of size less than ε such that for all $a \in A$ and $b \in B$, a < b, then there is $c \in I$, such that for all $a \in A$ and $b \in B$. a < c < b.

Theorem (M. 2023)

Suppose T is a non-classifiable first order theory in a countable relational vocabulary τ . If I is (κ, ε) -nice and $(<\kappa)$ -stable, then for all $f, g \in 2^{\kappa}$

$$f =_{\gamma}^{2} g \text{ iff } \mathcal{M}^{f} \cong \mathcal{M}^{g}.$$

Blue print of the proof

- ▶ Construct an ε -dense, (κ, ε) -nice, $(< \kappa)$ -stable, and κ -colorable linear order.
- Construct ordered trees from the linear order.
- Construct skeletons from ordered trees, to construct Ehrenfeucht-Mostowski models.
- Prove the isomorphism theorem.
- Construct the reductions.

Existence

Let $\theta < \kappa$ be the smallest cardinal such that there is a ε -dense model of DIO of size θ .

Theorem (M. 2023)

Suppose κ is inaccessible, or $\kappa = \lambda^+$, $2^{\theta} \le \lambda = \lambda^{<\varepsilon}$. There is a ε -dense, (κ, ε) -nice, $(<\kappa)$ -stable, and κ -colorable linear order.

Construction

Let \mathcal{Q} be a model of DLO of size $\theta < \kappa$, that is ε -dense.

Definition

Let $\kappa \times \mathcal{Q}$ be ordered by the lexicographic order, \mathcal{I}^0 be the set of functions $f: \varepsilon \to \kappa \times \mathcal{Q}$ such that $f(\alpha) = (f_1(\alpha), f_2(\alpha))$, for which $|\{\alpha \in \varepsilon \mid f_1(\alpha) \neq 0\}|$ is smaller than ε .

If $f, g \in \mathcal{I}^0$, then f < g if and only if $f(\alpha) < g(\alpha)$, where α is the least number such that $f(\alpha) \neq g(\alpha)$.

Construction

Let us fix $\tau \in \mathcal{Q}$. Let I be the set of functions $f: \varepsilon \to (\{0\} \times \mathcal{I}^0) \cup (\kappa \times \mathcal{Q})$ such that the following hold:

- ▶ $f \upharpoonright \{0\} : \{0\} \to \{0\} \times \mathcal{I}^0$.
- $ightharpoonup f \upharpoonright \varepsilon \backslash \{0\} : \varepsilon \backslash \{0\} \to \kappa \times \mathcal{Q}.$
- ▶ There is $\alpha < \varepsilon$ ordinal such that $\forall \beta > \alpha$, $f(\beta) = (0, \tau)$. We say that the least α with such property is the depth of f and we denote it by dp(f);
- ▶ There are functions $f_1 : \varepsilon \to \kappa$ and $f_2 : \varepsilon \to \mathcal{I}^0 \cup \mathcal{Q}$ such that $f(\beta) = (f_1(\beta), f_2(\beta))$ and $f_1 \upharpoonright dp(f) + 1$ is strictly increasing.

Construction

We say that f < g if and only if one of the following holds:

- ▶ $f(0) \neq g(0)$ and $f_2(0) < g_2(0)$;
- let $\alpha = dp(g)$, $\forall \beta \leq \alpha$, $f(\beta) = g(\beta)$ and $f_1(\alpha + 1) \neq 0$;
- exists $\alpha > 0$ such that $\forall \beta < \alpha$, $f(\beta) = g(\beta)$, and $f_1(\alpha), g_1(\alpha) \neq 0$ and $g(\alpha) > f(\alpha)$.

Thank you

Article at: https://arxiv.org/abs/2308.07510

